Por favor, use este identificador para citar o enlazar este ítem: http://dspace.unach.edu.ec/handle/51000/9102
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorJinez Tapia, José Luis-
dc.contributor.authorJácome García, Jaime Fernando-
dc.date.accessioned2022-05-19T18:07:28Z-
dc.date.available2022-05-19T18:07:28Z-
dc.date.issued2022-05-19-
dc.identifier.otherUNACH- FI-IETEL-
dc.identifier.urihttp://dspace.unach.edu.ec/handle/51000/9102-
dc.descriptionThe agricultural industry in Ecuador, in comparison with the current reality worldwide, is lagging significantly behind in the use of technology, and although it has been increasing for several decades, it has done so slowly and slowly that it seems to be stagnating. The use of technology can be very relevant, especially in the agricultural sector. This research work proposes a portable system for identification and classification of pests and diseases in the kidney tomato plant. To achieve this objective, several available technologies, both mature and emerging, were used, trying to be part of the industry 4.0 conception in agro-industrial applications. Initially, an assessment of the digital maturity of the agricultural sector in the town of Puctus was carried out, concluding that there is practically no use of technology in its production. Subsequently, sufficient samples of the different pests and diseases were taken to be classified manually with the help of experts. These data were stored in the cloud supported by the Google Cloud service for developers and subsequently used in the training of a classification algorithm using the Google Colab platform and with TensorFlow Machine Learning libraries. After several training sessions, the most accurate model was obtained, which was converted to a TensorFlow Lite format, optimized to be run on development boards with TPUs processing units, in this case the Google Coral Dev Board. The accuracy achieved in the validation of the original model was 96.875 %, that of the LITE model for the development board was 98.438 %, while in the real tests, validated with the help of experts, it reached an accuracy of 92.54%. The prototype meets the expectations of this research, but can be improved, for this we include some recommendations based on the experience gained while developing different tests, such as: the use of multispectral cameras in agro-industrial applications, the use of databases, or the implementation of this prototype in automatic spraying systemses_ES
dc.description.abstractLa industria agrícola en el Ecuador, en comparación con la realidad actual a nivel mundial, vive un retraso significativo en el uso de la tecnología, y aunque desde hace varias décadas atrás hasta la actualidad ha aumentado, lo ha hecho tan pausada y apocadamente que más parece estar estancada. El uso de la tecnología puede ser muy relevante, sobre todo en el sector agrario. Este trabajo de investigación propone un sistema portátil de identificación y clasificación de plagas y enfermedades en la planta de tomate riñón. Para conseguir este objetivo se utilizaron varias tecnologías disponibles, tanto maduras como emergentes, intentando ser parte de la concepción de la Industria 4.0 en aplicaciones agroindustriales. Inicialmente se realizó una evaluación de la madurez digital del sector agrícola de la localidad de Puctus, concluyendo que prácticamente no existe el uso de la tecnología en su producción. Posteriormente se tomaron suficientes muestras de las diferentes plagas y enfermedades para ser clasificadas manualmente con ayuda de expertos. Estos datos fueron almacenados en la nube apoyados del servicio de Google Cloud para desarrolladores y posteriormente utilizados en el entrenamiento de un algoritmo de clasificación usando la plataforma Google Colab y con librerías Aprendizaje Automático de TensorFlow. Luego de varios entrenamientos se obtuvo el modelo con mayor exactitud, el cual fue convertido a un formato de TensorFlow Lite, optimizado para ser ejecutado en tarjetas de desarrollo con unidades de procesamiento TPUs, en este caso la Google Coral Dev Board. La exactitud alcanzada en la validación del modelo original fue de 96.875 %, la del modelo LITE para la tarjeta de desarrollo fue de 98.438 %, mientras que, en las pruebas reales, validadas con la ayuda de expertos alcanzó una exactitud de 92.54%. El prototipo cumple con las expectativas de esta investigación, pero puede ser mejorado, para ello se incluye algunas recomendaciones basadas en la experiencia adquirida mientras se desarrollaban diferentes pruebas, como puede ser: el uso de cámaras multiespectrales en aplicaciones agroindustriales, el uso de bases de datos, o la implementación de este prototipo en sistemas de fumigación automática.es_ES
dc.description.sponsorshipUNACH, Ecuadores_ES
dc.format.extent106 páginases_ES
dc.language.isospaes_ES
dc.publisherRiobamba, Universidad Nacional de Chimborazoes_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/es_ES
dc.subjectMACHINE LEARNINGes_ES
dc.subjectTENSORFLOWes_ES
dc.titleDetección temprana de minador, mosca blanca y fusarium en el tomate riñón, aplicando técnicas de visión artificial y machine learninges_ES
dc.typebachelorThesises_ES
Aparece en las colecciones: Tesis - Ingeniería en Electrónica y Telecomunicaciones



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.