Por favor, use este identificador para citar o enlazar este ítem: http://dspace.unach.edu.ec/handle/51000/7338
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorLeguizamón, Guillermo-
dc.contributor.authorBodero Poveda, Elba-
dc.date.accessioned2021-02-05T19:33:42Z-
dc.date.available2021-02-05T19:33:42Z-
dc.date.issued2018-06-12-
dc.identifier.citationBodero, E., & Leguizamón, G. (2018). Efecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costos. NOVASINERGIA, ISSN 2631-2654, 1(1), 33–40. https://doi.org/10.37135/unach.ns.001.01.04es_ES
dc.identifier.issn2631-2654-
dc.identifier.otherDOI: https://doi.org/10.37135/unach.ns.001.01.04-
dc.identifier.urihttp://dspace.unach.edu.ec/handle/51000/7338-
dc.descriptionThe particle metaheuristics Particle Swarm Optimization (PSO) since its appearance has proven to be efficient in solving optimization problems, the variation of its parameters has allowed to improve its efficiency. The present work is focused on performing a comparative study of the effect of the acceleration coefficients c1and c2, on the performance of PSO tosolve a problem of cost estimation, through an Artificial Neural Network (ANN) sigmoidal feedforward. A range of values was evaluated in the acceleration coefficients, the other parameters, in this case inertial factor and the swarm size were worked with fixed values. The validation of the solution was carried out by means of a pipeline data set for fluid transfer used in the industry, coming from a real case, with information related to weight, welding type, diameter and the corresponding cost. The objective function used is the Mean Square Error (MSE), calculated between the observed values and the values estimated by the ANN. From the results it can be seen that very small values of c1and c2obtain low accuracy in the estimation of pipe manufacturing costs, while the best accuracy is achieved by means of acceleration coefficients with values greater than or equal to 0.5.es_ES
dc.description.abstractLa metaheurística poblacional Particle Swarm Optimization(PSO)desde su aparición ha demostrado ser eficiente en la solución de problemas de optimización, la variación de sus parámetrosha permitido mejorar su eficiencia. El presente trabajo está centradoen realizar un estudio comparativo del efecto de los coeficientes de aceleración, c1y c2, en el desempeño de PSO para resolver un problema de estimación de costospor medio de una Red Neuronal Artificial(ANN)feedforwardsigmoidal. Se evaluó un rango de valores en los coeficientes de aceleración, los demás parámetros, en este caso factor inercial y el tamaño de enjambre se trabajaron con valores fijos. La validación de la solución se realizó por medio de un conjunto de datos de fabricación de tuberías para transferencia de fluidos utilizada en la industria, proveniente de un caso real, con información relacionada con peso, tipo de soldadura, diámetro y el correspondiente costo. La función objetivo utilizada es el Error Cuadrático Medio (MSE), calculado entre los valores observados y los valores estimados por la ANN. A partir de los resultados se puede observar que valores muy pequeños de c1y c2obtienen baja exactitud en la estimación de costos de fabricación de tubería, en tanto que la mejor exactitud es lograda por medio decoeficientes de aceleración con valores mayores o iguales a 0.5.es_ES
dc.description.sponsorshipUNACH, Ecuador.es_ES
dc.format.extent33 - 40es_ES
dc.language.isospaes_ES
dc.publisherRiobamba: Universidad Nacional de Chimborazoes_ES
dc.relation.ispartofseriesNOVASINERGIA, 2018;Vol. 1, No. 1, diciembre-mayo, (33-40)-
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/es_ES
dc.subjectCoeficientes de Aceleración PSOes_ES
dc.subjectEstimación de Costoses_ES
dc.subjectMetaheurística Poblacionales_ES
dc.subjectParticle Swarm Optimizationes_ES
dc.subjectRed Neuronal Artificiales_ES
dc.titleEfecto de los coeficientes de aceleración de PSO en el desempeño de una Red Neuronal Artificial aplicada a la Estimación de Costoses_ES
dc.typeArtículoes_ES
Aparece en las colecciones: Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
23-Texto del artículo-42-8-10-20201113.pdf509,51 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.