UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

Proyecto de Investigación previo a la obtención del título de Ingeniero Civil

TRABAJO DE TITULACIÓN

Título del proyecto

VULNERABILIDAD SÍSMICA EN EDIFICIOS DE LA CIUDAD DE RIOBAMBA

Autor(es):

Alvaro Santiago Cáceres Santacruz Diego Renato Calderón Flores

Tutor:

Ing. Diego Barahona, M.Sc.

Riobamba – Ecuador

Año 2018

REVISIÓN

Los miembros del Tribunal de Graduación del proyecto de investigación de título: "VULNERABILIDAD SÍSMICA EN EDIFICIOS DE LA CIUDAD DE RIOBAMBA" presentado por **Alvaro Santiago Cáceres Santacruz y Diego Renato Calderón Flores** dirigida por: Ing. Diego Barahona. Una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constatado el cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la Universidad Nacional de Chimborazo.

Para constancia de lo expuesto firman:

Ing. Alexis Martínez

Miembro del Tribunal

Ing. Diego Barahona

Director del Proyecto

Ing. Jorge Nuñez

Miembro del Tribunal

Firma

Firma

CERTIFICACIÓN DEL TUTOR

Yo, Ing. Diego Javier Barahona Rivadeneira, en calidad de Tutor de Tesis, cuyo tema es: "VULNERABILIDAD SÍSMICA EN EDIFICIOS DE LA CIUDAD DE RIOBAMBA", CERTIFICO; que el informe final del trabajo investigativo, ha sido revisado y corregido, razón por la cual autorizo a los señores Alvaro Santiago Cáceres Santacruz y Diego Renato Calderón Flores para que se presenten ante el tribunal de defensa respectivo para que se lleve a cabo la sustentación de su Tesis.

Atentamente,

Ing. Diego Barahona

TUTOR DE TESIS

AUTORÍA DE LA INVESTIGACIÓN

La responsabilidad del contenido de este Proyecto de Graduación, corresponde exclusivamente a: Alvaro Santiago Cáceres Santacruz, Diego Renato Calderón Flores e Ing. Diego Barahona; y el patrimonio intelectual de la misma a la Universidad Nacional de Chimborazo.

Sr. Alvaro Santiago Cáceres Santacruz

C.I. 140069757-7

Sr. Diego Renato Calderón Flores

C.I. 060344952-1

AGRADECIMIENTO

Agradezco a Dios por todas las bendiciones que me ha dado, por ser fuente de sabiduría, a mis padres los cuales se han preocupado por mí y me han impulsado a seguir adelante en todo momento, a mis hermanos quienes son mis mejores amigos y han estado conmigo siempre que los he necesitado, a Katherine por ser un apoyo incondicional y ayudarme a lograr alcanzar esta dichosa y merecida victoria en la vida, a mis amigos Valeria, Diego y José por las todas experiencias vividas a lo largo de mi vida universitaria, a todos mis profesores por compartir conmigo sus conocimientos y amistad.

A mi tutor Ing. Diego Barahona por la paciencia y dedicación al momento de realizar el presente proyecto de investigación.

Alvaro Santiago Cáceres Santacruz

AGRADECIMIENTO

Agradezco a Dios y a mi madre Dolorosa por las bendiciones concedidas, a mi familia, a Katherine, a mis amigos Alvaro y José, por hacer de esta etapa universitaria un momento grato de mi vida. A mis compañeros de aula y docentes por contribuir con mi formación profesional.

Diego Renato Calderón Flores

DEDICATORIA

Dedico este trabajo a Dios, sin Él nada de esto hubiera sido posible, ha sabido guiarme en este lago camino, a mis padres Sonia y Luis ellos han sido pilares fundamentales en cada momento de mi vida gracias esfuerzo y dedicación he logrado culminar esta etapa de mi vida y a mis hermanos Martha, Cristian y Abigail quienes siempre creyeron en mí.

Alvaro Santiago Cáceres Santacruz

DEDICATORIA

Dedico este trabajo a mis padres, hermanas, sobrinos por el amor y apoyo incondicional que me han sabido brindar ya que son ellos parte importante en mi formación personal y profesional.

Diego Renato Calderón Flores

Contenido

ÍNDICE DE FIGURAS	x
ÍNDICE DE ILUSTRACIONES	x
ÍNDICE DE TABLAS	x
RESUMEN	xi
ABSTRACT	xii
1. INTRODUCCIÓN	1
2. OBJETIVOS	3
2.1. Objetivo General	3
2.2. Objetivos Específicos	3
3. MARCO TEÓRICO	4
4. METODOLOGÍA	7
5. RESULTADOS	23
5.1. CATEGORIZACIÓN DE LOS EDIFICIOS ANALIZADOS	23
5.2. ANÁLISIS POR MEDIO DEL MÉTODO ITALIANO	24
5.3. ANÁLISIS POR MEDIO DEL MÉTODO DE LA SNGR	24
6. DISCUSIÓN	26
7. CONCLUSIONES Y RECOMENDACIONES	28
7.1. Conclusiones	28
7.2. Recomendaciones	29
8. REFERENCIAS	30
9. ANEXOS	31
9.1. Anexo 1. Método SNGR	31
9.2. Anexo 2. Método Italiano	43
9.4. Anexo 4. Clasificación de los perfiles de suelo NEC 2015	117

ÍNDICE DE FIGURAS

Figura 1. Descripción nomenclatura empleada	8
Figura 2. Descripción nomenclatura usada	10
Figura 3. Descripción nomenclatura usada	11
Figura 4. Mapa de Microzonificación Sísmica de los suelos de Riobamba	15
Figura 5. Descripción nomenclatura empleada	17
Figura 6. Descripción nomenclatura empleada	18
Figura 7. Vulnerabilidad Sísmica Método SNGR vs Método Italiano	26
ÍNDICE DE IUSTRACIONES	
Ilustración 1. Mampostería Edificio A	8
Ilustración 2. Ventana tipo Edificio A	9
Ilustración 3. Toma de altura entrepiso Edificio A.	9
Ilustración 4. Separación entre mampostería y viga superior	10
Ilustración 5. Toma de datos esclerómetro	11
Ilustración 6. Zonas de hormiguero	12
Ilustración 7. Acero corrugado y visible	12
Ilustración 8. Losa	16
Ilustración 9. Elementos cortos	19
ÍNDICE DE TABLAS	
Tabla 1. Identificación del sistema resistente	8
Tabla 2. Huecos en paneles	8
Tabla 3. Relación altura-espesor	9
Tabla 4. Columna más crítica	11
Tabla 5. Resistencia del hormigón	11
Tabla 6. Distribución de peso en cada piso	18
Tabla 7. Resumen método italiano	21
Tabla 8. Método SNGR	22
Tabla 9. Categorización edificios evaluados	23
Tabla 10. Resumen método italiano	24
Tabla 11 Pasuman mátodo SNGP	25

RESUMEN

Una de las peores catástrofes naturales que pueden afectar a una población hoy en día sin duda es un sismo, como el ocurrido el 16 de Abril de 2016 en la costa Ecuatoriana de magnitud 7.8 Mw, generando pérdidas humanas y económicas. Riobamba se encuentra en una zona de alto riesgo sísmico, por lo que surge la necesidad de realizar esta investigación, cuyo objetivo es determinar el índice de vulnerabilidad sísmica en edificios superiores a 5 pisos, mediante el uso de dos métodos aproximados, el de la Secretaria Nacional de Gestión de Riesgos (SNGR) y el método Italiano modificado (Aguiar, R., Barbat, A., & Hanganu, 1997). Se tomaron datos en campo en 12 edificios ubicados en diferentes sectores de la ciudad. Los resultados de este estudio presentan que el 100% de los edificios analizados tienen una vulnerabilidad entre media y alta con la aplicación del método italiano, en cambio con el uso del método SNGR en su totalidad los edificios presentaron un índice de vulnerabilidad bajo.

Palabras clave: Vulnerabilidad sísmica, edificios, Riobamba, índice.

ABSTRACT

One of the worst natural catastrophes that can affect a population today is definitely an earthquake,

like the one that occurred on April 16, 2016 on the Ecuadorian coast of magnitude 7.8 Mw,

generating human and economic losses. Riobamba is located in an area of high seismic risk, so the

need to carry out this research, which objective is to determine the seismic vulnerability index in

buildings over 5 floors, by using two approximate methods, one from the National Secretary for

Risk Management (SNGR) and the modified Italian method (Aguiar, R., Barbat, A., & Hanganu,

1997). Data were taken in the field in 12 buildings located in different sectors of the city. The

results of this study show that 100% of the buildings analyzed have a medium to high vulnerability

with the application of the Italian method, while with the use of the SNGR method, buildings

presented a low vulnerability index.

Key words: Seismic vulnerability, buildings, Riobamba, index.

xii

1. INTRODUCCIÓN

Los terremotos son grandes catástrofes naturales que azotan a la humanidad, calculándose que unos catorce millones de personas han perecido desde que se tiene reseñas documentadas, (Yépez, F., Barbat, A., y Canas, J., 1995). En los últimos 20 años más de quinientas mil personas han fallecido a causas de terremotos, ejemplos como los de India (2001), Argelia (2003), Iran (2003), India y Pakistan (2005), Haití (2010), Chile (2010), China (2010), Indonesia (2010), Japón (2011), Nepal (2015), Ecuador (2016) y México (2017) son evidencias claras del poder destructivo de los terremotos.

El Ecuador al estar situado en el Cinturón de Fuego del Pacífico posee gran actividad sísmica y volcánica debido a la colisión de placas tectónicas de Nazca y Sudamérica, en los últimos 430 años a causa de sismos ciudades como Riobamba, Ambato e Ibarra fueron gravemente afectadas, en 1797 ocurrió un catastrófico terremoto en la sierra centro del país destruyendo Riobamba antigua lo que provocó que la misma sea reasentada en la llanura de Tapi.

El sismo más reciente en el Ecuador de gran magnitud ocurrió el 16 de abril de 2016, ocasionando numerosas pérdidas humanas y económicas, su epicentro fue en la costa norte ecuatoriana cuya magnitud fue 7.8 Mw, demostrando la vulnerabilidad símica existente en las edificaciones. (Secretaria Nacional de Gestión de Riesgos, 2016).

Riobamba está en la zona V según la Norma Ecuatoriana de Construcción (NEC-SE-DS: 2015) que indica un alto riesgo sísmico, probablemente la mayor parte de los edificios de la ciudad han sido diseñados utilizando el espectro del antiguo Código Ecuatoriano de la Construcción (CEC-2000) o la Norma Ecuatoriana de la Construcción (NEC-11). Todas estas amenazas sísmicas hacen que obligatoriamente las edificaciones deban ser construidas con fines sismo resistente, ya que el llegar a saber o determinar la vulnerabilidad sísmica que tendría una estructura es fundamental para determinar si es segura y por lo tanto habitable.

"Escenarios sísmicos probables evaluados en Quito, Guayaquil y Cuenca muestran la necesidad urgente por emprender programas para la mitigación del riesgo sísmico." (Yépez et al., 1995)

La finalidad de la presente investigación es determinar la vulnerabilidad sísmica de edificaciones superiores a 5 pisos situadas en la ciudad de Riobamba mediante el uso de dos metodologías aproximadas como son el método italiano y el método de la Secretaria Nacional de Gestión de Riesgos (SNGR).

2. OBJETIVOS

2.1.Objetivo General

Determinar la vulnerabilidad sísmica en edificios de la ciudad de Riobamba aplicando dos metodologías aproximadas: Método Italiano y el Método de la Secretaria Nacional de Gestión de Riesgos (SNGR).

2.2.Objetivos Específicos

- Identificar y categorizar el tipo de estructura, calidad y resistencia convencional con el que están constituidos los edificios en la ciudad de Riobamba.
- Levantar información de las características estructurales de los edificios en estudio.
- Determinar el índice de vulnerabilidad sísmica.

3. MARCO TEÓRICO

La mayoría de pérdidas humanas como económicas ocasionadas por terremotos han sido causadas por un deficiente comportamiento sísmico de las estructuras llegándose muchas veces a colapsos parciales e incluso totales, a pesar de que las normativas de construcción sismo resistentes mejoran día a día enriquecidas con la información obtenida de nuevas investigaciones continúan ocurriendo catastróficas pérdidas; las ocurrencias de los fenómenos sísmicos están aún fuera del control de la ciencia, es necesario mejorar el comportamiento sísmico de las estructuras existentes para mitigar las pérdidas que los terremotos están produciendo (Yépez et al., 1995).

La vulnerabilidad se debe intentar reducirla, en caso de una futura estructura dicha reducción se logrará por medio del cumplimiento de todos los requisitos de las normativas de la construcción sismo-resistentes, por ello es también muy importante que se mejoren dichas normativas de diseño conforme avanzan los conocimientos acerca del comportamiento sísmico de las estructuras; por el contrario si se van a examinar estructuras ya existentes la única alternativa para mitigar el riesgo sísmico es la reducción de la vulnerabilidad de las mismas mediante una evaluación de las pérdidas que ocurrirían bajo la acción de un sismo de determinadas características en la zona, para después de un posterior estudio económico costo-beneficio analizar la facilidad de su reforzamiento, readecuación, mejoramiento o demolición futura (Yépez et al., 1995).

La vulnerabilidad sísmica es una propiedad intrínseca de la estructura, una característica de su propio comportamiento ante la acción de un sismo descrito a través de una ley causa-efecto, donde la causa es el sismo y el efecto es el daño (Sandi, 1986). Esta no solo depende del sistema estructural, sino también de los elementos no estructurales y de otros factores: edad, material,

calidad de construcción, suelo de cimentación, especificación de cálculo y diseño (sismoresistentes), la proximidad de otras construcciones, entre otros.

La evaluación de la vulnerabilidad sísmica de edificios, debe ser una herramienta indispensable para los estudios de riesgo y de mitigación de desastres, requiere de un cuidadoso análisis de todos los aspectos involucrados, y de la aplicación de una metodología fiable que proporcione resultados útiles, comprensibles y de directa aplicación, ayudando así a la toma de decisiones para disminuir la perdida por terremotos.

En el año de 1993 se realizó un estudio post-terremoto en España en la región de Almería, cuya intensidad fue de VII en la escala de intensidad sísmica (MSK), el estudio empezó con el levantamiento del daño de los edificios de mampostería no reforzada de las estructuras de hormigón afectados por los terremotos, clasificando al daño por tipo y extensión para cada parte estructural y no estructural del edificio correlacionándolo con el índice del vulnerabilidad, se realizó un análisis estadístico que permitió obtener uno de los primeros resultados de la primera función observada de un estudio post-terremoto en España y la primera fue obtenida en Italia utilizando el método de índice de vulnerabilidad (Yépez et al., 1995). Este estudio permitió obtener la función de vulnerabilidad correspondiente a grado VII en la escala MSK, lo que facilitaría el proceso de obtener la misma función en otras escalas por medio de un simulador.

Estudios realizados en Ecuador sobre vulnerabilidad símica han demostrado que gran parte de las edificaciones analizadas son vulnerables ante eventos símicos (Barona, 2010). Vargas y Casignia. (2013) en su estudio realizado en la ciudad de Riobamba de los barrios José Mancero, 11 de Noviembre y San Antonio del Aeropuerto se obtuvo por el Método Italiano el 99.51% son mediana y altamente vulnerables, en tanto que el Método SNGR da como resultado que el 96.09% de las viviendas evaluadas son seguras. Otros estudios realizados en el año 2014 en el barrio Medio

Mundo donde se obtuvo que el 97.67% de las edificaciones son vulnerables ante un evento sísmico con la aplicación del método Italiano, las viviendas evaluadas mediante el método SNGR el 93.94% son de vulnerabilidad baja (Chiguano, 2014); en los barrios Liribamba y Cruzada social por el método Italiano el 72.00 % de las viviendas evaluadas son vulnerables, con el Método de la SNGR todas las viviendas son seguras (Inca & Morales, 2014). La zona en estudio y en general toda la ciudad de Riobamba se encuentra en un sitio de alto riesgo sísmico, por lo que se prevé consecuencias considerables en caso de presentarse este fenómeno natural.

El aporte de este trabajo será determinar si los edificios evaluados superiores a 5 pisos son o no vulnerables ante eventos sísmicos, para de esta manera dejar un precedente a posteriores investigaciones.

4. METODOLOGÍA

El proceso a seguir para el desarrollo de la investigación se presenta a continuación detallando de manera general los siguientes pasos.

La revisión de la bibliografía se realizó a través de artículos científicos y tesis de pre-grado, de los que se obtiene la información acerca de los métodos aproximados como el Método de la Secretaria Nacional de Gestión de Riesgos y el Método Italiano.

Para la recolección de datos, primero se realizó una socialización puerta a puerta con los dueños o representantes legales de los edificios, se solicitó la aprobación para el ingreso a la edificación. De los edificios que no se tuvo la acogida por parte de los dueños o representantes legales, se los excluyo de la muestra a analizar. Aquellos edificios que fueron parte de la muestra de estudio se procedió a la toma de datos en campo, mediante la aplicación de tablas, en las cuales se establece el listado de los parámetros a calificar dependiendo de cada uno de los métodos aproximados.

Para el desarrollo de la metodología se utilizó dos métodos aproximados ya establecidos como son el método italiano que consta de 11 parámetros, adecuado por Aguiar, R., Barbat, A., & Hanganu (1997) que califica en tres rangos las vulnerabilidades: entre 0 - 30 como baja o seguras, entre 31 - 60 medianamente vulnerables y mayores a 61 como muy vulnerables, descritos a continuación:

1. Organización del sistema resistente

i. Identificación del sistema resistente

Tabla 1. Identificación del sistema resistente

Identificación del Sistema resistente		
Mampostería de:	Ladrillo	
Pórtico de hormigón armado y mampostería confinada	X	
Calidad de la mampostería	Regular	

Ilustración 1. Mampostería Edificio A

Clase A. Muros de corte con una buena densidad de muros y con un número de ejes resistentes mayor a 4 y ladrillos sólidos y muy bien confinados.

Clase B. Pórticos de hormigón, sin muros de corte que no cumplan requisitos de la clase A.

Clase C. Edificios que no califiquen como A o B.

 El pórtico analizado es mixto de hormigón armado y mampostería confinada sin muros de corte, mampostería de ladrillo en estado regular, presentó fisuras y no se encontró bien confinada.

i. Huecos en paneles

Tabla 2. Huecos en paneles

L	2,42	m
d	4,02	m
n	1,65	m
m	2,67	m
m*n	4,406	m^2
L*d	9,728	m^2

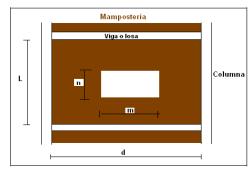


Figura 1. Descripción nomenclatura empleada

Fuente: (Aguiar & Bolaños, 2006)

Ilustración 2. Ventana tipo Edificio A

Clase A. $m*n \le 0.3 L*d$.

Clase B. $m*n \le 0.6 L*d$.

Clase C. Edificios que no califiquen como A o B.

• Se observó que la relación entre ventanas y panel no superan el 60%.

ii. Relación altura – espesor de la mampostería

Tabla 3. Relación altura-espesor

L	2,42 m
b	0,15m
L/	b=16,13

Ilustración 3. Toma de altura entrepiso Edificio A.

Clase A. $L/b \le 20$.

Clase B. $L/b \le 30$.

Clase C. Edificios que no califiquen como A o B.

• Se observó que la relación altura-espesor es menor a 20.

iii. Separación entre mampostería y viga superior

Ilustración 4. Separación entre mampostería y viga superior

Clase A. Separación menor a 1.

Clase B. Separación entre 1 y 3.

Clase C. Edificios que no califiquen como A o B.

• En el edificio analizado no existe separación entre mampostería y viga.

iv. Mampostería no sobresalga al filo extremo del pórtico

Figura 2. Descripción nomenclatura usada

Fuente: (Aguiar & Bolaños, 2006)

Clase A. $s \le 0,2*b$.

Clase B. $s \le 0.3*b$.

Clase C. Edificios que no califiquen como A o B.

• No existe mampostería que sobresalga al filo del pórtico en el edificio analizado.

v. Confinamiento de la mampostería

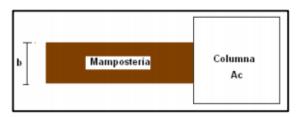


Figura 3. Descripción nomenclatura usada

Fuente: (Aguiar & Bolaños, 2006)

Clase A. $Ac \ge 25*b$.

Clase B. $Ac \ge 20* b$.

Clase C. Edificios que no califiquen como A o B.

- El área transversal de la columna analizada es mayor a 25 veces el ancho de la mampostería.
- La calificación del Edificio "A" en el primer parámetro fue clase B.

2. Calidad del sistema resistente.

i. Resistencia del Hormigón

Tabla 5. Resistencia del hormigón

Resistencia del hormigón			
Esclerómetr	Esclerómetro (kg/cm ²)		
R1	240		
R2	220		
R3	210		
R4	220		
R5	220		
R6	210		
R7	210		
R8	240		
Promedio	221,25		

Tabla 4. Columna más crítica

x (cm)

94

b (cm)

15

Columna más crítica

y (cm)

95,7

Ac (cm2)

8995,8

Ilustración 5. Toma de datos esclerómetro

Clase A. $f'c > 210 \text{ kg/cm}^2$.

Clase B. Edificios que no califiquen como A o C.

Clase C. $f^{*}c < 210 \text{ kg/cm}^{2}$.

• La resistencia promedio del hormigón supera la resistencia mínima de 210 kg/cm².

ii. Presencia de zonas de hormiguero

Zonas de hormiguero: Si

Ilustración 6. Zonas de hormiguero

Clase A. No existe zona de hormiguero.

Clase B. Edificios que no califiquen como A o C.

Clase C. Existe zona de hormiguero.

• En el edificio analizado existen zonas de hormiguero.

iii. Acero corrugado y no visible

Acero visible y corrugado.

Ilustración 7. Acero corrugado y visible

Clase A. No es visible el acero de refuerzo.

Clase B. Edificios que no califiquen como A o C.

Clase C. Es visible el acero de refuerzo.

• Es visible el acero de refuerzo.

iv. Calidad de la mampostería y mortero

Clase A. Calidad de mampostería y mortero en buen estado.

Clase B. Edificios que no califiquen como A o C.

Clase C. Calidad de mampostería y mortero en mal estado.

 Calidad de mampostería y mortero se encuentran en un estado regular debido a que se observa pequeñas fisuras y grietas.

v. Mano de obra calificada

Clase A. Mano de obra calificada.

Clase B. Edificios que no califiquen como A o C.

Clase C. Mano de obra no califica.

- Mano de obra calificada, el edificio fue construido por un arquitecto donde se entiende que existió dirección técnica.
- La calificación del edificio "A" en el segundo parámetro es clase C.

3. Calidad de la resistencia convencional.

i. Cortante actuante

El periodo de vibración (T) se calculó mediante un análisis dinámico del pórtico espacial. Con el cual se procedió a determinar el valor de la aceleración espectral.

Período de vibración (Ta)=1,10 s

Coeficiente de importancia (I)=1,5

Espectro de diseño (Sa) = 0.529

Peso total de la edificación (W)=1234,56 Tn

Coeficiente de reducción de respuesta estructural (R)= 8

Coeficiente de irregularidad (Øp)=1

Coeficiente de irregularidad en elevación (Øe)=1

$$Vs = \frac{I * Sa(Ta)}{R * \emptyset p * \emptyset e} * W$$

$$Vs = \frac{1,5 * 0,529}{8 * 1 * 1} * 1234,58$$

ii. Cortante resistente

Resistencia a la compresión f'c = 221,25 Kg/cm2

 $\lambda = 1.0$ (para concreto de peso normal)

b = 99 cm

d = 93,5 cm

$$Vr = 0.14 \lambda \sqrt{f'c} * b * d$$

$$Vr = 0.14 * 1 * \sqrt{221.25} * 99 * 93.5$$

$$Vr = 18913.66 * 8$$

$$Vr = 151309.27 \ Kg \approx 151.31 \ Tn$$

iii. Relación entre el sistema resistente y el cortante actuante

$$\alpha = Vr/Vs$$
 $\alpha = 151,31/122,45$
 $\alpha = 1,235$

Clase A. Cuando $\alpha \ge 1.5$.

Clase B. Cuando $0.7 \le \alpha \le 1.5$.

Clase C. Cuando $\alpha \le 0.7$.

La calificación del Edificio "A" en el tercer parámetro es clase B.

4. Posición del edificio y cimentación

Como no se pudo valorar el perfil del suelo se utilizara el mapa de zonificacion sismica de los suelos de la ciudad de Riobamba (Barahona, D., Vargas, V., Casignia, J., 2013) donde se define según la ubicación del edificio el tipo del suelo, adaptandolo a los perfiles del suelo que establece la NEC actual.

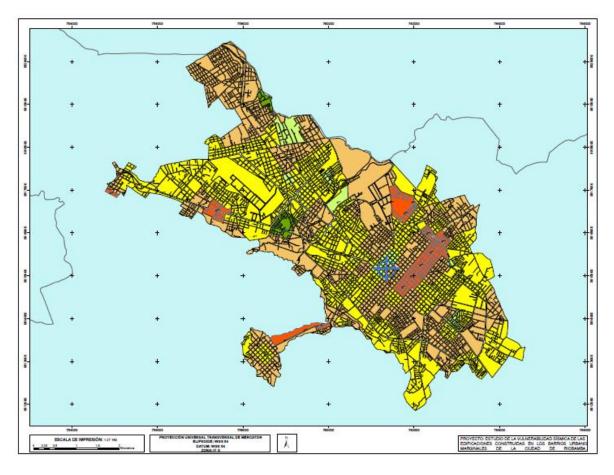


Figura 4. Mapa de Microzonificación Sísmica de los suelos de Riobamba

Fuente: (Barahona, D., Vargas, V., Casignia, J., 2013)

Clase A. Suelo duro y una topografía plana, terreno de dureza intermedia o con mayor resistencia y una pendiente menor a 15%, suelo rocoso y una pendiente menor al 30%.

Clase B. Cuando no cumple con los requisitos de las clases A y C.

Clase C. La cimentación posee una cimentación insuficiente para cualquier tipo de suelo, edificio sobre suelo con pendiente mayor al 30% o bien sobre terreno con pendiente superior a 60%.

➤ La calificación del edificio "A" en el cuarto parámetro es clase A debido a que el perfil del suelo según la norma NEC (2015) es tipo B y tiene una topografia plana.

5. Losas

Ilustración 8. Losa

Área total de la losa =193,93 m2 (19,05m*10,18m).

Área total de aberturas = 7,92 m2 (2,40 m * 3,30 m).

Espesor de la losa = 0.5 m.

Clase A. Losa rígido y bien conectada a elementos resistentes verticales. Área de aberturas < 30% Área de la losa en planta.

Clase B. Cuando no cumple con los requisitos de las clases A y C.

Clase C. Losa poco rígida y mal conectada a los elementos resistentes. Área de aberturas > 50% Área de la losa en planta o f'c $< 210 \text{ kg/cm}^2$.

➤ La calificación del edificio "A" en el quinto parámetro es clase B debido a que tienen una losa plana y las aberturas no superan el 30% de la losa en planta.

6. Configuración en planta

i. Relación lado menor y lado mayor

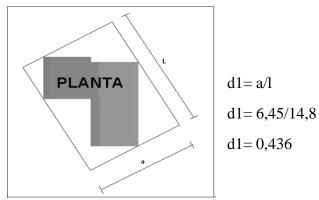


Figura 5. Descripción nomenclatura empleada

Fuente: (Aguiar & Bolaños, 2006)

ii. Relación entre el centro de masas y el centro de rigideces

Centro de mas	sa:	(Centro de rig	idez:	
XCM=	7,2 m		XCR=	9,76 m	
YCM=	3,225 m		YCR=	4,21 m	
Excentricidad:					
ex=	-2,56	e max x=	0,9345	Lx=	18,69 m
ey=	-0,985	e max y=	0,42475	Ly=	8,495 m
X=	18,69 m			Excentricidad e=	-2,56 m
Υ=	8,495 m		din	n. Menor planta d=	4,8 m
d2=	-0,53333				

iii. Relación entre la longitud del volado y la longitud total en dirección del volado

Clase A. Edificio con planta regular que satisface los siguientes requisitos:

$$d1 > 0.4$$
, $d2 < 0.2$, $d3 < 0.3$

Clase B. Edificio que no clasifica como A y C.

Clase C. Edificio con planta irregular que verifica uno de los siguientes requisitos:

- Como no existe volado en el edificio A el valor de d3 es igual a 0.
- La calificación del edificio "A" en el sexto parámetro es clase B debido a que no cumple con las condiciones establecidas de clase A y clase C.

7. Configuración en elevación

i. Relación entre la longitud de una torre de altura T, situada sobre el edificio y la altura total H

Altura total del edificio= 18,6 m (H)

Altura de entrepiso= 2,42 m (T)

T/H = 0.14

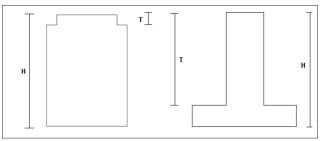


Figura 6.Descripción nomenclatura empleada

Fuente: (Aguiar & Bolaños, 2006)

ii. Variación en altura de piso

• La altura de entrepiso h1 es diferente en los pisos superiores.

iii. Distribución de peso en cada piso

Tabla 6. Distribución de peso en cada piso

# Piso	P c/piso (Ton)	Distribución (%)
1	200,88	16,27
2	200,88	16,27
3	166,56	13,39
4	166,56	13,39
5	166,56	13,39
6	166,56	13,39
7	166,56	13,39
Total:	1234,56	100

Clase A. Edificio que no tenga variaciones significativas del sistema resistente, piso inferior más fuerte que el superior, la masa va decreciendo en altura. $0.9 \le T/H \le 0.1$.

Clase B. Edificio que no clasifica como A y C.

Clase C. Edificios con variación del sistema resistente, hay aumentos de masa en altura superior al 20%.

 $0.1 \le T/H \le 0.3$

 $0.7 \le T/H \le 0.9$

O bien sin variaciones significativas pero

$$0.3 \le T/H \le 0.7$$

La calificación del edificio "A" en el septimo parámetro es clase B porque no hay aumentos significativos de masa en altura.

8. Conexión elementos críticos

Clase A. La conexión viga columna es buena, cuando se satisface bV≤0.75xbC, dimensión mínima de una columna es mayor a 25 cm.

Clase B. Edificio que no clasifica como A y C.

Clase C. Calidad deficiente de la unión viga columna, si se verifica uno de los siguientes casos:

Ancho de las vigas es mayor que el ancho de la columna.

Dimensión mínima de una columna es menos a 20cm.

La calificación del edificio "A" en el octavo parámetro es clase B debido a que tiene losa plana y no se puede observar las dimensiones de las vigas

9. Elementos con baja ductilidad

Ilustración 9. Elementos cortos

Clase A. No posee elementos cortos.

Clase B. Cuando sus elementos tienen baja ductilidad y cumplen con la condición.

$$\left(\frac{L}{4} < h < \frac{L}{2}\right) o\left(\frac{L}{2} < h < \frac{2-L}{3}\right)$$

Clase C. Cuando sus elementos tienen baja ductilidad y cumplen con la condición $h < \frac{L}{4}$

En elementos que requieren de elevada ductilidad. $h < \frac{L}{2}$

➤ La calificación del edificio "A" en el noveno parámetro es clase C porque posee elementos cortos.

10. Elementos no estructurales

Clase A. Elementos externos estables o anclados de manera eficiente.

Clase B. Elementos externos estables o anclados de manera poco fiable.

Clase C. Elementos inestables y mal conectados.

➤ La calificación del edificio "A" en el decimo parámetro es clase B debido a que los elementos externos estables se encuentran anclados de manera poco fiable.

11. Estado de conservación

Clase A. Edificios cuyas vigas, columnas, losas y mampostería no estén fisuradas.

Clase B. Edificios que no son A o C.

Clase C. Elementos inestables y mal conectados.

➤ La calificación del edificio "A" en el parámetro decimo primero es clase B debido a que los elementos principales presentan fisuras que no superan el 30% en elementos principales.

Tabla 7. Resumen método italiano

FICHA DE EVALUACIÓN DEL ÍNDICE E NOMBI	DE VULNERABILIDAD F RE DEL EDIFIC		TURALES DE EDIFICIOS	
7	Tabla de Resumer	n		
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTA
1. Organización del sistema resistente	В	6	1	6
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	В	11	1	11
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	В	3	1	3
6. Configuración en planta	В	3	0,5	1,5
7. Configuración en elevación	В	3	1	3
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	С	6	1	6
10. Elementos no estructurales	В	4	0,25	1
11. Estado de conservación	В	10	1	10
			Total	49,75
		ľ	Nivel de Vulnerabilidad	MEDI.

En la tabla 7 se observa que el edificio A obtuvo su calificación más baja en la calidad del sistema resistente y en elementos de baja ductilidad debido a que se evidenció zonas de hormiguero, acero corrugado-visible y elementos cortos en los pisos superiores.

En la tabla 8 se presenta la calificación obtenida en el edifico "A" con la aplicación del método de la Secretaria Nacional de Gestión de Riesgos (2011) que cuenta con 10 parámetros, al igual que el método italiano clasifica en tres rangos entre 0 y 33 como vulnerabilidad baja, entre 33 y 63 vulnerabilidad media y mayores a 63 vulnerabilidad alta.

Tabla 8. Método SNGR

	FICHA DE EVALUA	ACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍS	ICO ESTRUCTURAL	ES DE EDIFICIOS		
NOMBRE DEL EDIFICIO:		ICIO "A"		FECHA:	07 de Septiembre de	2017
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1			
	Describe la tipología estructural	Estructura de Madera	1			0
Sistema Estructural	predominante en la edificación	Estructura de Caña	10	0	1,2	
	predominante en la educación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
l'ipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
	Descrbe el tipo de material	Losa de hormigón armado	0			0
Гіро de Cubierta	utilizado como sistema de cubierta	Viga de madera y zinc	5	0	1	
	de la edificación	Caña y zinc	10			
		Viga de madera y teja	5			
		Losa de hormigón armado	0	0	1	0
Describe el tipo	Describe el tipo de material	Vigas y entramado de madera	5			
Sistema de Entrepiso	utilizado para el sistema de pisos diferentes a la cubierta	Entramado madera/ caña	10			
		Entramado metálico	1			
		Entramado hormigón, metálico	1			
	Se considera el número de pisos	1 piso	0	1	0,8	0,8
	como una variable de	2 pisos	1			
Número de pisos		3 pisos	5			
	vulnerabilidad, debido a que su altura incide en su comportamiento	4 pisos	10			
	altura incide en su comportamiento	5 pisos o más	1			
	Permite tener una idea de la	Antes de 1970	10		1	
Año de Construcción	posible aplicación de criterios de	entre 1971 y 1980	5	_		_
Ano de Construcción	diseño de defensa contra amenaza	entre 1981 y 1990	1	5		5
	diseno de delensa contra amenaza	entre 1991 y 2010	0			
		buena	0			
Estado de Conservación	El grado de deterioro infuye en la	aceptable	1	10	1	10
istado de Consei vacion	vulnerabilidad de la edificación	regular	5	10		10
		malo	10			
	El tipo de terreno influye en las	Firme, seco	0			
Características del suelo bajo la	características de vulnerabilidad	Inundable	1	0	0,8	0
edificación	física	Ciénaga	5	J	0,0	
	nsica	Húmedo, blando, relleno	10			
·	La topografía del sitio de	A nivel, el terreno plano	0			
Concaratía da citic	construcción de la edificación	Bajo nive de cazada	5	0	0.0	0
Topografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0	J	0,8	
	a amenaza	Escarpe positivo o negativo	10	1		
	La menaganaia da i	Regular	0	5 1,2		
Forma de construcción	La presencia de irregularidad en la	Irregular	5		1,2	6
	edificación genera vulnerabilidades	Irregularidad severa	10			
					TOTAL	23
					NIVEL DE	F * : *
					VULNERABILIDAD	BAJA

Fuente: (Secretaría Nacional de Gestión de Riesgos, 2011)

Con la aplicación del método de la SNGR el edificio A obtuvo un índice de vulnerabilidad baja, indicando su forma de calificación en la tabla 8.

5. RESULTADOS

Por medio del trabajo realizado en diferentes edificios de la ciudad de Riobamba se determinó el índice de vulnerabilidad sísmica, a través de los métodos aproximados de la SNGR y el método italiano modificado.

Para lograr ver porcentajes, tendencias y cantidades del aspecto más relevante del estudio en edificios analizados, se organizó y presentó de manera gráfica estos resultados como se detalla a continuación.

5.1.CATEGORIZACIÓN DE LOS EDIFICIOS ANALIZADOS

Tabla 9. Categorización edificios evaluados

Edificios	N. pisos	Edad	Sistema estructural
A	7	45	H. Armado
В	7	5	H. Armado
C	6	12	H. Armado
D	6	25	H. Armado
Е	7	7	H. Armado
F	6	12	H. Armado
G	6	3	H. Armado
Н	8	9	H. Armado
I	7	15	H. Armado
J	6	17	H. Armado
K	7	10	H. Armado
L	6	5	H. Armado

5.2. ANÁLISIS POR MEDIO DEL MÉTODO ITALIANO

Una vez desarrollados los 11 parámetros que analiza el método italiano, los edificios estudiados obtuvieron un índice de vulnerabilidad símica entre medio y alto.

Tabla 10. Resumen método italiano

Edificios	Calificación	Vulnerabilidad
Α	49,75	Media
В	46	Media
С	74,75	Alta
D	41,5	Media
E	30,5	Media
F	62,5	Alta
G	39,25	Media
Н	39,25	Media
I	39,25	Media
J	36,25	Media
K	37	Media
L	36,25	Media

Se obtuvo un índice de vulnerabilidad alto en los edificios C y F debido a que la organización y la calidad de sistema resistente se encuentran en un deplorable estado, a su vez que no tiene una buena calidad en su resistencia convencional, se evidencian elementos cortos y su estado de conservación es malo debido a que presentan fisuras.

5.3. ANÁLISIS POR MEDIO DEL MÉTODO DE LA SNGR

Mediante el desarrollo de los 10 parámetros que analiza el método de la SNGR se observó que las edificaciones analizadas obtuvieron un índice de vulnerabilidad símica bajo.

Tabla 11. Resumen método SNGR

Edificios	Calificación	Vulnerabilidad
A	23	Baja
В	2	Baja
С	19,8	Baja
D	8	Baja
E	8	Baja
F	13	Baja
G	13	Baja
H	2	Baja
I	2	Baja
J	3	Baja
K	2	Baja
L	2	Baja

Se observó que los edificios C y F se encuentran en mal estado, por ende se prevé que obtendrán un índice de vulnerabilidad alto, sin embargo después del estudio realizado se obtuvo que no son vulnerables ante un evento sísmico.

6. DISCUSIÓN

Mediante la aplicación de las dos metodologías mencionadas anteriormente se obtuvo el índice de vulnerabilidad sísmica de los edificios analizados que se representa a continuación.

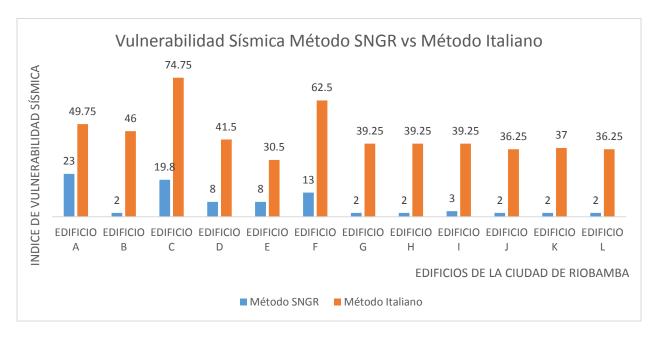


Figura 7. Vulnerabilidad Sísmica Método SNGR vs Método Italiano

Se puede evidenciar que mediante el método italiano se obtiene un índice de vulnerabilidad sísmica mayor que el método de la SNGR, debido a que el método italiano utiliza cálculos simplificados considerando características de la mampostería, la resistencia a la compresión del hormigón, columnas cortas, configuración en planta y elevación, anclaje de elementos estructurales y no estructurales, en cambio el método de la SNGR evalúa de forma superficial los edificios.

Algunos de los parámetros relacionados entre los dos métodos son el sistema estructural, tipo de mampostería, sistema de entrepiso y cubierta, número de pisos, topografía y cimentación.

En lo referente al sistema estructural se observó que el método de la SNGR califica solo la tipología estructural predominante, el método Italiano toma en cuenta más parámetros como son

juntas de construcción mal ejecutadas, zonas de hormiguero, acero visible-oxidado y resistencia del hormigón a compresión.

Los dos métodos aplicados califican la mampostería mediante el tipo de material utilizado además el método Italiano considera la calidad, espesor, huecos en paneles y relación altura-espesor.

Con el método de la SNGR se evalúa la topografía y cimentación sin tomar en cuenta el tipo de suelo presente en la edificación, a diferencia del método italiano que en este mismo parámetro evalúa el tipo de pendiente existente y el perfil del suelo en el que fue cimentada la edificación.

El sistema de entrepiso y tipo de cubierta en el método SNGR es valorado solo por el tipo de material utilizado por lo contrario el método italiano penaliza su resistencia a compresión, tipo de losa y si está bien conectada a elementos resistentes verticales, espesor y aberturas.

La configuración en elevación se califica de diferente manera en ambos métodos, la SNGR solo considera el número de pisos como una variable de vulnerabilidad debido a que su altura influye en su comportamiento, en cambio el método italiano también analiza la relación altura total del edifico con la altura de entrepiso, variación de altura existente entre pisos y la distribución de pesos en cada piso.

7. CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

Por medio de los resultados obtenidos en este trabajo se obtuvo que con la aplicación del método italiano el 100 % de los edificios analizados poseen un índice de vulnerabilidad entre medio y alto.

Mediante el desarrollo del método de la SNGR el 100 % de los edificios presentan una vulnerabilidad baja, sus resultados son muy distantes a la realidad de los edificios evaluados, debido a que es un método que evalúa parámetros superficiales.

La mayoría de los parámetros estudiados en ambos métodos son similares pero su forma de calificación varía generando diferentes respuestas, como se observó en el sistema estructural con la aplicación del método de la SNGR se obtuvo una calificación de cero lo que representa que no tiene amenaza sísmica, por el contrario, al aplicar la metodología italiana obtuvieron una calificación de clase B y C lo que nos indica que presentan amenaza sísmica.

La calificación obtenida con la aplicación del método Italiano en la calidad de la resistencia convencional de los edificios analizados fueron clase B y C penalizando su calificación total, en cambio el método de la SNGR no toma en cuenta este parámetro al momento de dar su calificación final.

7.2. Recomendaciones

Establecer un convenio entre el municipio de Riobamba y la Universidad Nacional de Chimborazo con el fin de dictar charlas sobre actualizaciones de las normativas vigentes en nuestro país.

Realizar un estudio de caso con cada uno de los edificios analizados mediante el uso de métodos analíticos para obtener datos exactos del estado de la edificación.

8. REFERENCIAS

- Aguiar Falconí, R. (2013). Microzonificacion Sismica de Quito. Quito: CEINCI ESPE.
- Yépez, F., Barbat, A., & Canas, J. (1995). Riesgo, peligrosidad y vulnerabilidad sísmica de edificios de mampostería. Obtenido de http://www.cimne.com/tiendaCIMNE/free/MIS12.pdf
- Sandi, H "Vulnerability and risk analysis for individual structures and systems. Proceeding of the Eight European Conference on Earthquake Engineering", 8EECE. Vol. 7, Topic 2. Lisboa:1986.
- Martinez Cuevas, S. (2014). Evaluación de la vulnerablidad sismica urbana basada en tipologias constructivas y disposición urbana de la edificación. Madrid: Universidad Politecnica de Madrid.
- Norma Ecuatoriana de la Construcción . (2015). Direccion Comunitaria Solcial MIDUVI.
- Paguay, J., & Trujillo, M. (2010). Evaluación de la construcción informal de edificaciones en zonas urbano marginales de la ciudad de Riobamba. Riobamba.
- Vargas, A., & Casignia, J. (2013). Determinacion del indice de vulnerabilidad sismica de las viviendas existentes en tres barrios urbano mmarginales de la cuidad de Riobamba. Riobamba: Repositorio digital UNACH.
- Inca Novillo, C. A., & Morales Carranza, W. E. (2014). "Determinación del índice de vulnerabilidad sísmica de las viviendas existentes en los barrios liribamba y cruzada social de la ciudad de Riobamba". Riobamba: Repositorio digital UNACH.
- Secretaria Nacional de Gestión de Riesgos. (2016). INFORME DE SITUACION N°65-Terremoto 7.8 ° Pedernales. Quito: Secretaría de Gestión de Riesgos. Retrieved from http://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2016/05/Informe-desituaci%C3%B3n-n%C2%B065-especial-16-05-20161.pdf
- Secretaria Nacional de Gestión de Riesgos. (2011). Guía para implementar el análisis de vulnerabilidades a nivel Cantonal, 0-18. https://reliefweb.int/sites/reliefweb.int/files/resources/ID_10464__Redhum-Ec-GUIA_PARA_IMPLEMENTAR_EL_ANALISIS_DE_VULNERABILIDADES_A_NI VEL CANTONA-SNGR-PNUD-21-SEP- 2011.pdf
- Barona Zaldumbide, D. M. (2010). *Vulnerabilidad Sísmica del Centro Histórico de Sangolqui*. Quito. Repositorio digital ESPE
- Barahona, D., Vargas, V., & Casignia, J., (2013). Mapa Microzonificación Sísmica de los Suelos de Riobamba. Riobamba.

9. ANEXOS

9.1. Anexo 1. Método SNGR

	,	ACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍS	CO ESI KUCI UKAL	Т	,	
NOMBRE DEL EDIFICIO:		ICIO "A"		FECHA:	07 de Septiembre de	2017
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1			
	Describe la tipología estructural predominante en la edificación	Estructura de Madera	1	0		
Sistema Estructural		Estructura de Caña	10		1,2	0
	prodonimante en at cuntucion	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Describe el materia predominate	Pared de bloque	1		1.2	1.2
Γipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe Pared de tapia/ baharenque/ madera	10 5	-		
		Cubierta metálica	5			
	Descrbe el tipo de material	Losa de hormigón armado	0			
Tipo de Cubierta	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10	1 "		
		Viga de madera y teja	5	1		
		Losa de hormigón armado	0			
	Describe el tipo de material	Vigas y entramado de madera	5	1		
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1			
		Entramado hormigón, metálico	1			
	Se considera el número de pisos como una variable de	1 piso	0	1		
		2 pisos	1			0,8
Número de pisos	vulnerabilidad, debido a que su	3 pisos	5		0,8	
	altura incide en su comportamiento	4 pisos	10			
		5 pisos o más	1			
	Permite tener una idea de la	Antes de 1970	10		1	5
Año de Construcción	posible aplicación de criterios de	entre 1971 y 1980	5	- 5		
	diseño de defensa contra amenaza	entre 1981 y 1990 entre 1991 y 2010	0	-		
		buena	0			
	El grado de deterioro infuye en la	aceptable	1			
Estado de Conservación	vulnerabilidad de la edificación	regular	5	10	1	10
		malo	10			
	The same same	Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	1 .		
edificación	características de vulnerabilidad física	Ciénaga	5	0	0,8	0
	lisica	Húmedo, blando, relleno	10			
	La topografía del sitio de	A nivel, el terreno plano	0			
l'opografía de sitio	construcción de la edificación	Bajo nive de cazada	5	0	0,8	0
ropogrami de sino	índica posible debilidades frente a	Sobre nivel calzada	0	l	0,0	
	a amenaza	Escarpe positivo o negativo	10			
	La presencia de irregularidad en la	Regular	0	-		
Forma de construcción	edificación genera vulnerabilidades	Irregular	5	5	1,2	6
	I , , , , , , , , , , , , , , , , , , ,	Irregularidad severa	10			20
					TOTAL NIVEL DE	23
					I INIVEL DE	BAJA

NOMBRE DEL EDIFICIO:	EDIE	TCIO "B"		FECHA:	29 de Agosto de 201	7
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1	1		
		Estructura de Madera	1			
istema Estructural	Describe la tipología estructural predominante en la edificación	Estructura de Caña	10	0	1,2	0
	predominante en la educación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Γipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
Tipo de Cubierta	Descrbe el tipo de material	Losa de hormigón armado	0			
	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10			
		Viga de madera y teja	5			
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5			
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1			
	Se considera el número de pisos como una variable de	Entramado hormigón, metálico	1			
		1 piso	0			
		2 pisos	1	1	0,8	0,8
Número de pisos	vulnerabilidad, debido a que su	3 pisos	5			
	altura incide en su comportamiento	4 pisos	10			
		5 pisos o más	1			
	Permite tener una idea de la	Antes de 1970	10		1	0
Año de Construcción	posible aplicación de criterios de	entre 1971 y 1980	5	0		
nio de Constitución	diseño de defensa contra amenaza	entre 1981 y 1990	1			
	abeno de delenda consta amenana	entre 1991 y 2010	0			
		buena	0			
Estado de Conservación	El grado de deterioro infuye en la	aceptable	1	0	1	0
	vulnerabilidad de la edificación	regular	5			
		malo	10			
	El tipo de terreno influye en las	Firme, seco	0			
Características del suelo bajo la	características de vulnerabilidad	Inundable	1	0	0,8	0
edificación	física	Ciénaga	5	_		
		Húmedo, blando, relleno	10			
	La topografía del sitio de	A nivel, el terreno plano	0	1		
Γopografía de sitio	construcción de la edificación	Bajo nive de cazada	5	0	0,8	0
	*	Sobre nivel calzada	0	1		
	a amenaza	Escarpe positivo o negativo	10		1	
3 1 4 14	La presencia de irregularidad en la	Regular	0	1	1.	_
Forma de construcción	edificación genera vulnerabilidades	Irregular	5	0	1,2	0
	-	Irregularidad severa	10			
					TOTAL	2
					NIVEL DE	

	,	CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIC	O ESI KUCI UKALI.			
NOMBRE DEL EDIFICIO:		ICIO "C"		FECHA:	16 de Junio de 2017	
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1			
	Describe la tipología estructural	Estructura de Madera	1			
istema Estructural	predominante en la edificación	Estructura de Caña	10	0	1,2	0
	predominante en la edineación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Γipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
Tipo de Cubierta	Descrbe el tipo de material	Losa de hormigón armado	0			
	-	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10			
		Viga de madera y teja	5			
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5			
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1			
		Entramado hormigón, metálico	1			
	Se considera el número de pisos como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso	0	1		
		2 pisos	1		0,8	0,8
Número de pisos		3 pisos	5			
		4 pisos	10			
		5 pisos o más	1			
	D 2 4 11 1 1	Antes de 1970	10			
1° 1 ° 1′	Permite tener una idea de la	entre 1971 y 1980	5		1	
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	0		0
	diseño de defensa contra amenaza	entre 1991 y 2010	0	1		
		buena	0			
S. 1 1 0	El grado de deterioro infuye en la	aceptable	1	_		-
Estado de Conservación	vulnerabilidad de la edificación	regular	5	5	1	5
		malo	10			
	The last of the	Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	1 .	0.0	
edificación	características de vulnerabilidad	Ciénaga	5	1	0,8	0,8
	física	Húmedo, blando, relleno	10	1		
	La topografía del sitio de	A nivel, el terreno plano	0			
n	construcción de la edificación	Bajo nive de cazada	5	1	0.0	_
Гороgrafía de sitio		Sobre nivel calzada	0	0	0,8	0
	a amenaza	Escarpe positivo o negativo	10	1		
		Regular	0			
Forma de construcción	La presencia de irregularidad en la	Irregular	5	10	1,2	12
	edificación genera vulnerabilidades	Irregularidad severa	10	1	1,2	
	1	1 0	1	1	TOTAL	19,8
					NIVEL DE	
					1	BAJA

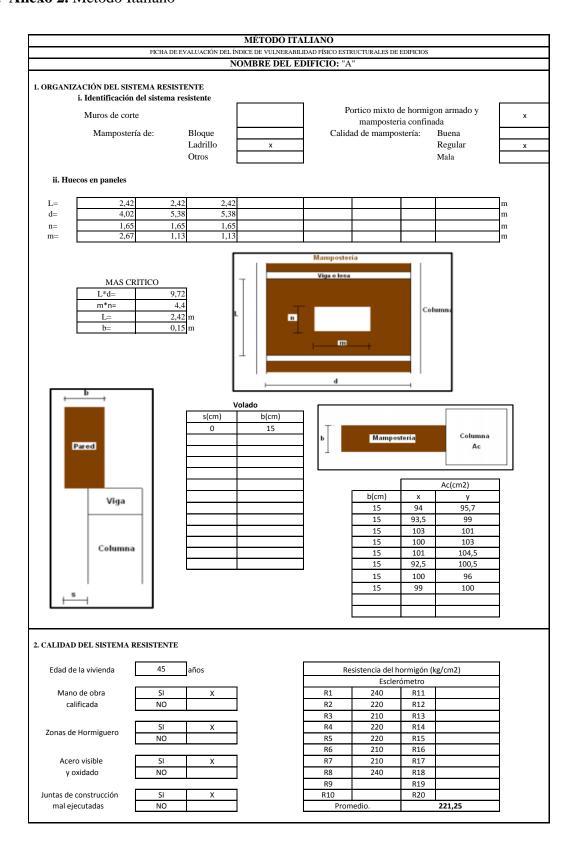
NOMBRE DEL EDIEICIO.	1	CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIC	DI ROCI GIGIEL	FECHA:	09 de Septiembre de 2017		
NOMBRE DEL EDIFICIO: VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	ICIO "D" INDICADORES CONSIDERADOS	AMENAZA SÍSMICA		PONDERACIÓN	CALIFICACION REAL	
		Hormigón Armado	0				
		Estructura Metálica	1				
	Describe la tipología estructural	Estructura de Madera	1				
Sistema Estructural	predominante en la edificación	Estructura de Caña	10	0	1,2	0	
	predominante en la edineación	Estructura de Pared Portante	5				
		Mixta madera/ hormigón	5				
		Mixta metálica/ hormigón	1				
		Pared de ladrillo	1				
	Describe el materia predominate	Pared de bloque	1				
Tipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2	
	de la edificación	Pared de adobe	10				
		Pared de tapia/ baharenque/ madera	5				
		Cubierta metálica	5				
	Descrbe el tipo de material	Losa de hormigón armado	0				
Tipo de Cubierta	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0	
		Caña y zinc	10				
		Viga de madera y teja	5				
		Losa de hormigón armado	0				
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5				
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0	
	diferentes a la cubierta	Entramado metálico	1				
		Entramado hormigón, metálico	1				
	Se considera el número de pisos como una variable de	1 piso	0	1			
		2 pisos	1		0,8	0,8	
Número de pisos		3 pisos	5				
	vulnerabilidad, debido a que su altura incide en su comportamiento	4 pisos	10				
		5 pisos o más	1				
	Permite tener una idea de la	Antes de 1970	10				
Año de Construcción	posible aplicación de criterios de	entre 1971 y 1980	5	1	1	1	
And the Construction	diseño de defensa contra amenaza	entre 1981 y 1990	1		1	1	
	discho de delensa contra amenaza	entre 1991 y 2010	0				
		buena	0				
Estado de Conservación	El grado de deterioro infuye en la	aceptable	1	5	1	5	
Stado de Conservacion	vulnerabilidad de la edificación	regular	5		1	3	
		malo	10				
	El tipo de terreno influye en las	Firme, seco	0				
Características del suelo bajo la	características de vulnerabilidad	Inundable	1	0	0,8	0	
dificación	física	Ciénaga	5		0,8	U	
	lisica	Húmedo, blando, relleno	10				
·	La topografía del sitio de	A nivel, el terreno plano	0				
Concernitio de citic	construcción de la edificación	Bajo nive de cazada	5	0	0.0	0	
l'opografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0		0,8	U	
	a amenaza	Escarpe positivo o negativo	10				
	La proconcia do irragularidad en la	Regular	0				
Forma de construcción	La presencia de irregularidad en la edificación genera vulnerabilidades	Irregular	5	0	1,2	0	
	edificación genera vulnerabilidades	Irregularidad severa	10				
					TOTAL	8	
					NIVEL DE	D***	
					VULNERABILIDAD	BAJA	

	FICHA DE EVALUAC	CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIC	O ESTRUCTURALE	S DE EDIFICIOS		
NOMBRE DEL EDIFICIO:	EDIF	ICIO "E"		FECHA:	30 de Agosto de 201	.7
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1			
	Describe la tipología estructural	Estructura de Madera	1	0		
Sistema Estructural	predominante en la edificación	Estructura de Caña	10		1,2	0
	predofiliance en la cunicación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Tipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
	Descrbe el tipo de material	Losa de hormigón armado	0			
Tipo de Cubierta	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10			
		Viga de madera y teja	5			
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5			
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1			
		Entramado hormigón, metálico	1			
	Se considera el número de pisos como una variable de	1 piso	0	1		
		2 pisos	1		0,8	0,8
Número de pisos		3 pisos	5			
	vulnerabilidad, debido a que su altura incide en su comportamiento	4 pisos	10			
		5 pisos o más	1			
	D 2 4 21 1.1	Antes de 1970	10			
A~ 1 C	Permite tener una idea de la	entre 1971 y 1980	5	0	1	0
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	0		0
	diseño de defensa contra amenaza	entre 1991 y 2010	0			
		buena	0			
E (1 1 0 27	El grado de deterioro infuye en la	aceptable	1	0		
Estado de Conservación	vulnerabilidad de la edificación	regular	5	0	1	0
		malo	10			
	The late of the	Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	0	0.0	
edificación	características de vulnerabilidad	Ciénaga	5	0	0,8	0
	física	Húmedo, blando, relleno	10			
	La topografía del sitio de	A nivel, el terreno plano	0			
m « 1 ::	construcción de la edificación	Bajo nive de cazada	5		0.0	
Topografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0	0	0,8	0
	a amenaza	Escarpe positivo o negativo	10	1		
		Regular	0			
Forma de construcción	La presencia de irregularidad en la	Irregular	5	5	1,2	6
	edificación genera vulnerabilidades	Irregularidad severa	10	1		Ĭ
		-			TOTAL	8
					NIVEL DE	
						BAJA

NOMBRE DEL EDIFICIO: VARIABLE DE VULNERABILIDAD Sistema Estructural Tipo de Material en Paredes	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN Describe la tipología estructural predominante en la edificación Describe el materia predominate utilizado en las paredes divisorias de la edificación	ICIO "F" INDICADORES CONSIDERADOS Hormigón Armado Estructura Metálica Estructura de Madera Estructura de Caña Estructura de Pared Portante Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque Pared de piedra	AMENAZA SÍSMICA 0 1 1 10 5 1 1	FECHA: CALIFICACIÓN 0	15 de Julio de 2017 PONDERACIÓN	CALIFICACION REAL 0
	Describe la tipología estructural predominante en la edificación Describe el materia predominate utilizado en las paredes divisorias de la edificación	Estructura Metálica Estructura de Madera Estructura de Caña Estructura de Pared Portante Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	1 10 5 5 1	0	1,2	0
	Describe la tipología estructural predominante en la edificación Describe el materia predominate utilizado en las paredes divisorias de la edificación	Estructura de Madera Estructura de Caña Estructura de Pared Portante Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	1 10 5 5 1	0	1,2	0
	Describe la tipologia estructural predominante en la edificación Describe el materia predominate utilizado en las paredes divisorias de la edificación	Estructura de Caña Estructura de Pared Portante Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	10 5 5 1	0	1,2	0
	predominante en la edificación Describe el materia predominate utilizado en las paredes divisorias de la edificación	Estructura de Pared Portante Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	5 5 1 1	0	1,2	0
Гіро de Material en Paredes	Describe el materia predominate utilizado en las paredes divisorias de la edificación	Mixta madera/ hormigón Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	5 1 1			
Гіро de Material en Paredes	Describe el materia predominate utilizado en las paredes divisorias de la edificación	Mixta metálica/ hormigón Pared de ladrillo Pared de bloque	1			
Гіро de Material en Paredes	Describe el materia predominate utilizado en las paredes divisorias de la edificación	Pared de ladrillo Pared de bloque	1			
l'ipo de Material en Paredes	Describe el materia predominate utilizado en las paredes divisorias de la edificación	Pared de bloque				
Гіро de Material en Paredes	utilizado en las paredes divisorias de la edificación					
Гіро de Material en Paredes	de la edificación	Pared de piedra	1			
			10	1	1,2	1,2
		Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
	Descrbe el tipo de material	Losa de hormigón armado	0			
Tipo de Cubierta	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10			
		Viga de madera y teja	5			
	1	Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5			
		Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1			
		Entramado hormigón, metálico	1			
	Se considera el número de pisos como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso	0	1		
		2 pisos	1		0,8	0,8
Número de pisos		3 pisos	5			
		4 pisos	10			
		5 pisos o más	1			
	Permite tener una idea de la	Antes de 1970	10		1	0
Año de Construcción	posible aplicación de criterios de	entre 1971 y 1980	5	0		
no de Constanción	diseño de defensa contra amenaza	entre 1981 y 1990	1	_		
	disens de delensa contra amenada	entre 1991 y 2010	0			
	1	buena	0			
Estado de Conservación		aceptable	1	1	1	1
		regular	5			
		malo	10			
	El tipo de terreno influye en las	Firme, seco	0		1	
Características del suelo bajo la	características de vulnerabilidad	Inundable	1	0	0,8	0
edificación	física	Ciénaga	5			
		Húmedo, blando, relleno	10		ļ	
	1 1 1	A nivel, el terreno plano	0		1	
Γopografía de sitio	1	Bajo nive de cazada	5	5	0,8	4
	1 *	Sobre nivel calzada	0	」	0,0	
		Escarpe positivo o negativo	10		ļ	
	II a presencia de irregularidad en la l	Regular	0	1	1	
Forma de construcción	adificación ganara vulnarabilidadas	Irregular	5	5	1,2	6
		Irregularidad severa	10			
					TOTAL	13
					NIVEL DE VULNERABILIDAD	BAJA

NOMBRE DEL EDIFICIO:	FDIF	ICIO "G"		FECHA:	4 de Julio de 2017	
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1	1		
Sistema Estructural		Estructura de Madera	1]		
	Describe la tipología estructural predominante en la edificación	Estructura de Caña	10	0	1,2	0
	predofiliante en la edificación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5	<u> </u>		
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Tipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
Tipo de Cubierta	Descrbe el tipo de material	Losa de hormigón armado	0]		
	utilizado como sistema de cubierta	Viga de madera y zinc	5	0	1	0
	de la edificación	Caña y zinc	10			
		Viga de madera y teja	5			
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5	Ī		
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1	Ī		
		Entramado hormigón, metálico	1	Ī		
	Se considera el número de pisos como una variable de	1 piso	0	1		
		2 pisos	1			0,8
Número de pisos		3 pisos	5		0,8	
	vulnerabilidad, debido a que su	4 pisos	10	Ī		
	altura incide en su comportamiento	5 pisos o más	1	1		
	Damaita tanan idaa da la	Antes de 1970	10		1	0
A~ 1 G	Permite tener una idea de la	entre 1971 y 1980	5	0		
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	1		
	diseño de defensa contra amenaza	entre 1991 y 2010	0	1		
		buena	0			
E-t-1- 1- C	El grado de deterioro infuye en la	aceptable	1	0	1	0
Estado de Conservación	vulnerabilidad de la edificación	regular	5	1	1	U
		malo	10	Ī		
	F1.: 1	Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	0	0.0	0
edificación	características de vulnerabilidad	Ciénaga	5	1 0	0,8	0
	física	Húmedo, blando, relleno	10	Ī		
	La topografía del sitio de	A nivel, el terreno plano	0			
Tono amelio de airi-	construcción de la edificación	Bajo nive de cazada	5	_	0.0	_
Topografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0	0	0,8	0
	a amenaza	Escarpe positivo o negativo	10	1		
		Regular	0			
Forma de construcción	La presencia de irregularidad en la	Irregular	5	0	1,2	0
	edificación genera vulnerabilidades	Irregularidad severa	10		1,2	
	,	· ×			TOTAL	2
					NIVEL DE	
					VULNERABILIDAD	BAJA

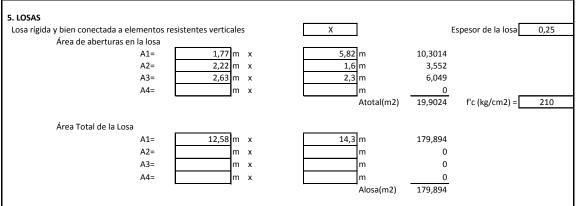
NOMBRE DEL EDIFICIO:	FDIE	CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIC FICIO "H"		FECHA:	14 de Junio de 2017	
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1	1		
	Decembre le time le cée estamentame l	Estructura de Madera	1			
Sistema Estructural	Describe la tipología estructural predominante en la edificación	Estructura de Caña	10	0	1,2	0
	predominante en la educación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Γipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			,
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
Tipo de Cubierta	Descrbe el tipo de material	Losa de hormigón armado	0	1		
		Viga de madera y zinc	5	0	1	0
		Caña y zinc	10	Ī		
		Viga de madera y teja	5			
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5	Ī		
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1	1		
		Entramado hormigón, metálico	1	1		
	Se considera el número de pisos como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso	0	1		
		2 pisos	1			0,8
Número de pisos		3 pisos	5		0,8	
		4 pisos	10			
		5 pisos o más	1			
		Antes de 1970	10			
	Permite tener una idea de la	entre 1971 y 1980	5	1 .	1	
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	0		0
	diseño de defensa contra amenaza	entre 1991 y 2010	0	†		
		buena	0			
	El grado de deterioro infuye en la	aceptable	1	1		
Estado de Conservación	vulnerabilidad de la edificación	regular	5	0	1	0
		malo	10	†		
		Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	† _		
edificación	características de vulnerabilidad	Ciénaga	5	0	0,8	0
	física	Húmedo, blando, relleno	10	†		
	La topografía del sitio de	A nivel, el terreno plano	0			
		Bajo nive de cazada	5	1 .		_
l'opografía de sitio		Sobre nivel calzada	0	0	0,8	0
	a amenaza	Escarpe positivo o negativo	10	†	1	
		Regular	0			
Forma de construcción	La presencia de irregularidad en la	Irregular	5	0	1,2	0
de companienti	edificación genera vulnerabilidades	Irregularidad severa	10	†	1,2	U
	1		10	ı	TOTAL	2
					NIVEL DE	
					VULNERABILIDAD	BAJA

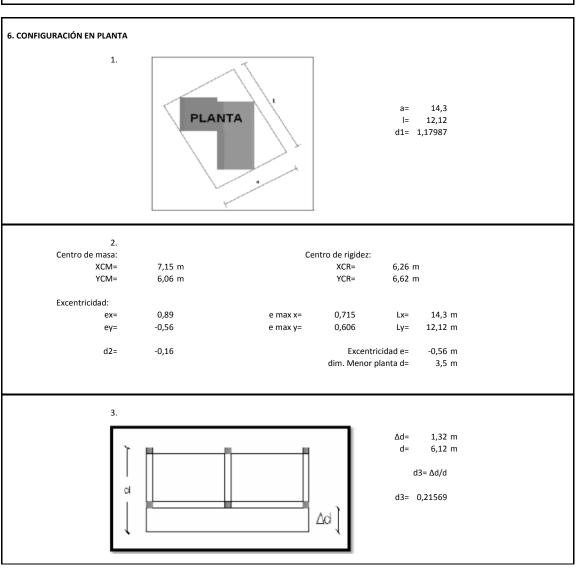

		SECRETARÍA NACIONAL DE G CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIC				
NOMBRE DEL EDIFICIO:		FICIO "T"		FECHA:	23 de Agosto de 201	.7
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN		CALIFICACION REAL
		Hormigón Armado Estructura Metálica	0	0	1,2	0
Sistema Estructural	Describe la tipología estructural predominante en la edificación	Estructura de Madera Estructura de Caña	10			
	predominante en la educación	Estructura de Pared Portante Mixta madera/ hormigón	5 5			
		Mixta metálica/ hormigón Pared de ladrillo	1			
Tipo de Material en Paredes	Describe el materia predominate utilizado en las paredes divisorias	Pared de bloque Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe Pared de tapia/ baharenque/ madera	10 5			
	Descrbe el tipo de material	Cubierta metálica Losa de hormigón armado	5	<u> </u>		
Tipo de Cubierta	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc Caña y zinc	5 10	0	1	0
	Describe el tipo de material utilizado para el sistema de pisos	Viga de madera y teja Losa de hormigón armado	5			
Sistema de Entrepiso		Vigas y entramado de madera Entramado madera/ caña	5 10	0	1	0
	diferentes a la cubierta	Entramado metálico Entramado hormigón, metálico	1			
Número do nicos	Se considera el número de pisos como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso 2 pisos	0	1	0,8	0,8
Número de pisos		3 pisos 4 pisos 5 pisos o más	5 10 1			
	Permite tener una idea de la	Antes de 1970 entre 1971 y 1980	10			
Año de Construcción	posible aplicación de criterios de diseño de defensa contra amenaza	entre 1981 y 1990 entre 1991 y 2010	1 0	0	1	0
	El grado de deterioro infuye en la	buena aceptable	0			
Estado de Conservación	vulnerabilidad de la edificación	regular malo	5	1	1	1
Características del suelo bajo la	El tipo de terreno influye en las	Firme, seco Inundable	0		_	
edificación	características de vulnerabilidad física	Ciénaga Húmedo, blando, relleno	5	0	0,8	0
	La topografía del sitio de construcción de la edificación	A nivel, el terreno plano Bajo nive de cazada	0 5			_
Topografía de sitio	índica posible debilidades frente a a amenaza	Sobre nivel calzada Escarpe positivo o negativo	0	0	0,8	0
Forma de construcción	La presencia de irregularidad en la edificación genera vulnerabilidades	Regular Irregular	0 5	0	1,2	0
	concación genera vuniciatomidades	Irregularidad severa	10		TOTAL	3
					NIVEL DE VULNERABILIDAD	BAJA

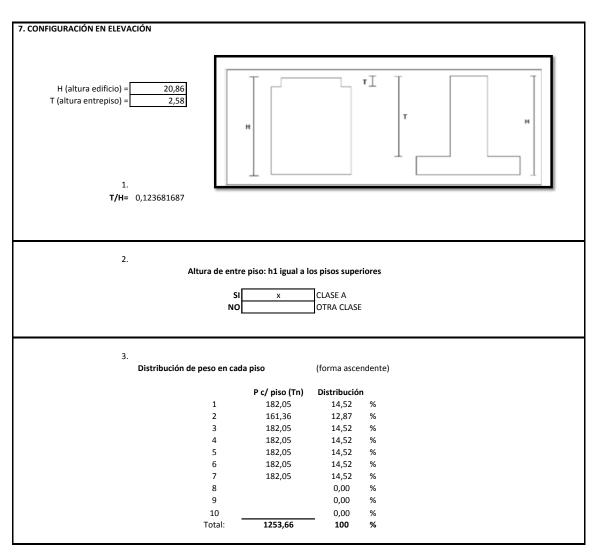
		SECRETARÍA NACIONAL DE G CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIO				
NOMBRE DEL EDIFICIO:		TCIO "J"		FECHA:	19 de Julio de 2017	
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado Estructura Metálica	0			
	Describe la tipología estructural	Estructura de Madera	1	7		
Sistema Estructural		Estructura de Caña	10	0	1,2	0
	predominante en la edificación	Estructura de Pared Portante	5			
		Mixta madera/ hormigón	5			
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Tipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5	<u> </u>		
	Descrbe el tipo de material utilizado como sistema de cubierta de la edificación	Losa de hormigón armado	0	1		_
Tipo de Cubierta		Viga de madera y zinc	5	0	1	0
		Caña y zinc	10	-		
		Viga de madera y teja	5			
	D 7 12 1	Losa de hormigón armado	0	1		
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5			0
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1	-		
		Entramado hormigón, metálico	0			
	Se considera el número de pisos	1 piso 2 pisos	1	1		
Número de pisos	como una variable de	2 pisos 3 pisos	5		0,8	0,8
Numero de pisos	vulnerabilidad, debido a que su	4 pisos	10			
	altura incide en su comportamiento	5 pisos o más	10			
		Antes de 1970	10		+	
	Permite tener una idea de la	entre 1971 y 1980	5	1		
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	0	1	0
	diseño de defensa contra amenaza	entre 1991 y 2010	0	†		
		buena	0			
	El grado de deterioro infuye en la	aceptable	1	<u> </u>		
Estado de Conservación	vulnerabilidad de la edificación	regular	5	0	1	0
		malo	10			
	F16 1 4 10 1	Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las características de vulnerabilidad	Inundable	1	0	0.0	0
edificación	características de vulnerabilidad física	Ciénaga	5] "	0,8	U
	nond	Húmedo, blando, relleno	10			
	La topografía del sitio de	A nivel, el terreno plano	0			
Topografía de sitio	construcción de la edificación	Bajo nive de cazada	5	0	0,8	0
ropograma de salo	1 2	Sobre nivel calzada	0] "	0,0	U
	a amenaza	Escarpe positivo o negativo	10			
	La presencia de irregularidad en la	Regular	0	1		
Forma de construcción	edificación genera vulnerabilidades	Irregular	5	0	1,2	0
		Irregularidad severa	10			
					TOTAL	2
					NIVEL DE	BAJA
					VULNERABILIDAD	

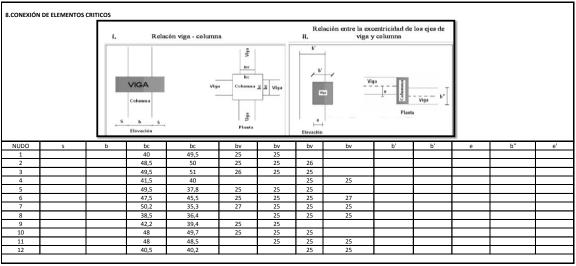
NOMBRE DEL EDIFICIO:		CIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSIO ICIO "K"	CO LOT ROOT CRUILL	FECHA:	30 de Agosto de 201	7
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA	CALIFICACIÓN	PONDERACIÓN	CALIFICACION REAL
		Hormigón Armado	0			
		Estructura Metálica	1			
	Describe la tipología estructural	Estructura de Madera	1			
Sistema Estructural	predominante en la edificación	Estructura de Caña	10	0	1,2	0
	predominante en la cunicación	Estructura de Pared Portante	5	1		
		Mixta madera/ hormigón	5	1		
		Mixta metálica/ hormigón	1			
		Pared de ladrillo	1			
	Describe el materia predominate	Pared de bloque	1			
Γipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2
	de la edificación	Pared de adobe	10			
		Pared de tapia/ baharenque/ madera	5			
		Cubierta metálica	5			
Tipo de Cubierta	Descrbe el tipo de material	Losa de hormigón armado	0	1		
	utilizado como sistema de cubierta de la edificación	Viga de madera y zinc	5	0	1	0
		Caña y zinc	10	Ī		
		Viga de madera y teja	5	Ī		
		Losa de hormigón armado	0			
Sistema de Entrepiso	Describe el tipo de material	Vigas y entramado de madera	5	1		
	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0
	diferentes a la cubierta	Entramado metálico	1	†		
		Entramado hormigón, metálico	1	1		
	Se considera el número de pisos como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso	0	1		
		2 pisos	1		0,8	0,8
Número de pisos		3 pisos	5			
		4 pisos	10			
		5 pisos o más	1			
		Antes de 1970	10			
	Permite tener una idea de la	entre 1971 y 1980	5	1	1	
Año de Construcción	posible aplicación de criterios de	entre 1981 y 1990	1	0		0
	diseño de defensa contra amenaza	entre 1991 y 2010	0	+		
		buena	0			
3.1.1.0	El grado de deterioro infuye en la	aceptable	1	1	_	
Estado de Conservación	vulnerabilidad de la edificación	regular	5	0	1	0
		malo	10	†		
		Firme, seco	0			
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1	1		
edificación	características de vulnerabilidad	Ciénaga	5	0	0,8	0
	física	Húmedo, blando, relleno	10	†		
	La topografía del sitio de	A nivel, el terreno plano	0			
	construcción de la edificación	Bajo nive de cazada	5	1 .		
Γopografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0	0	0,8	0
	a amenaza	Escarpe positivo o negativo	10	†	1	
		Regular	0			
Forma de construcción	La presencia de irregularidad en la	Irregular	5	0	1,2	0
	edificación genera vulnerabilidades	Irregularidad severa	10	†	1,2	
	<u> </u>				TOTAL	2
					NIVEL DE	
					VULNERABILIDAD	BAJA

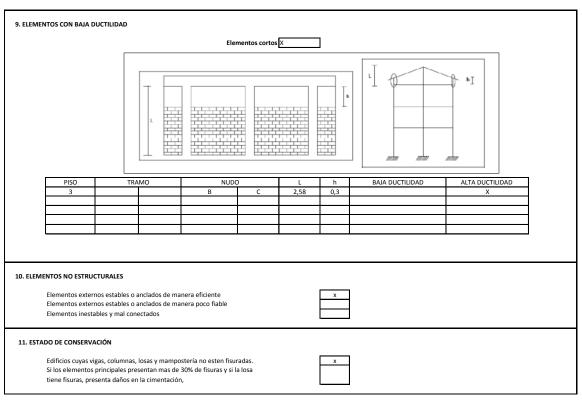
NOMBRE DEL EDIFICIO:	HDIE	TCIO "L"		FECHA:	13 de Septiembre de	2017	
VARIABLE DE VULNERABILIDAD	DESCRIPCIÓN DE LA VARIABLE Y USO DE LA INFORMACIÓN	INDICADORES CONSIDERADOS	AMENAZA SÍSMICA		PONDERACIÓN	CALIFICACION REAL	
		Hormigón Armado	0				
		Estructura Metálica	1				
	D 11/11/11	Estructura de Madera	1	Ī			
stema Estructural	Describe la tipología estructural predominante en la edificación	Estructura de Caña	10	0	1,2	0	
	predominante en la educación	Estructura de Pared Portante	5				
		Mixta madera/ hormigón	5				
		Mixta metálica/ hormigón	1				
		Pared de ladrillo	1				
	Describe el materia predominate	Pared de bloque	1				
Tipo de Material en Paredes	utilizado en las paredes divisorias	Pared de piedra	10	1	1,2	1,2	
	de la edificación	Pared de adobe	10				
		Pared de tapia/ baharenque/ madera	5				
		Cubierta metálica	5				
	Descrbe el tipo de material utilizado como sistema de cubierta	Losa de hormigón armado	0		1		
ipo de Cubierta		Viga de madera y zinc	5	0		0	
	de la edificación	Caña y zinc	10	1			
		Viga de madera y teja	5	1			
		Losa de hormigón armado	0				
	Describe el tipo de material	Vigas y entramado de madera	5				
Sistema de Entrepiso	utilizado para el sistema de pisos	Entramado madera/ caña	10	0	1	0	
	diferentes a la cubierta	Entramado metálico	1	1			
		Entramado hormigón, metálico	1				
	como una variable de vulnerabilidad, debido a que su altura incide en su comportamiento	1 piso	0	1			
		2 pisos	1				
Número de pisos		3 pisos	5		0,8	0,8	
		4 pisos	10				
		5 pisos o más	1				
	D 3 4 11 1 1	Antes de 1970	10				
1° 1 ° 1 ′ ′′	Permite tener una idea de la posible aplicación de criterios de	entre 1971 y 1980	5	0	1	0	
Año de Construcción		entre 1981 y 1990	1			0	
	diseño de defensa contra amenaza	entre 1991 y 2010	0	1			
		buena	0				
	El grado de deterioro infuye en la	aceptable	1		1	0	
Estado de Conservación	vulnerabilidad de la edificación	regular	5	0		0	
		malo	10				
	The last of the	Firme, seco	0				
Características del suelo bajo la	El tipo de terreno influye en las	Inundable	1		0.0	0	
edificación cara física	características de vulnerabilidad	Ciénaga	5	0	0,8	0	
	nsica	Húmedo, blando, relleno	10				
	La topografía del sitio de	A nivel, el terreno plano	0				
	construcción de la edificación	Bajo nive de cazada	5	_	0.5	_	
Copografía de sitio	índica posible debilidades frente a	Sobre nivel calzada	0	0	0,8	0	
	a amenaza	Escarpe positivo o negativo	10				
	To associate to the total of	Regular	0				
Forma de construcción	La presencia de irregularidad en la	Irregular	5	0	1,2	0	
	edificación genera vulnerabilidades	Irregularidad severa	10	1			
					TOTAL	2	
					NIVEL DE		


9.2. Anexo 2. Método Italiano




3. CALIDAD DE LA RESIST	DAD DE LA RESISTENCIA CONVENCIONAL		$\alpha = \frac{V_R}{V_S}$		# total de col	umnas	12
		N1	N2	N3	N4	N5	N6
COLUMNAS	a (cm)	38,5	42,2	48	40,5	47,5	49,5
COLOIVINAS	b (cm)	36,4	39,4	48,5	40,2	45,5	37,8
VIGAS	a (cm)	25	26	25	25	25	27
	b (cm)	40	40	41	40	43	41


	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	øe * W	
Coeficiente de Importancia I Categoria	Coeficiente		
Edificaciones esenciales	1,5	_	
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1,5	Porticos especiales sismo resistentes, de hormigon armado con vigas descolgadas y con muros estructurales de hormigon armado o con diagonales rigidizadoras (sistemas duales)	8
Sa (Ta)=	0,388	Porticos especiales sismo resistentes, de hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de hormigon armado con vigas banda	5
W = d	1253,66 Tn	_	
d= Carga muerta d	le la estructura		
Vs=	91,203765 Tn	f'c= 279 kg/cm2	
$Vr = 0.14 * \lambda$	$*\sqrt{f'c}*b*d$	b= 38,5 cm d= 36,4 cm N columnas 12	
Vr=	39,32543149 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI [1	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media x Roca competente Roca blanda				

	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES D	E EDIFICIOS	
NOMB	RE DEL EDIFICIO:	''B''		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	С	12	1	12
Calidad del sistema resistente	A	0	0,5	0
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	С	6	0,5	3
7. Configuración en elevación	В	3	1	3
8. Conexión elementos criticos	Α	0	0,75	0
9. Elementos de baja ductilidad	С	6	1	6
10. Elementos no estructurales	Α	0	0,25	0
11. Estado de conservación	A	0	1	0
			Total	46
			Nivel de Vulnerabilidad	MEDI

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "C' 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Ladrillo Regular Mala Otros ii. Huecos en paneles L= 4,46 4,08 4,995 4,995 4,18 4,18 d= m n= 1,8 1,8 0,52 0,52 0,52 0,5 4,46 4,08 1,4 1,92 1,17 1,725 m= Mampostería Viga o losa MAS CRITICO L*d= 10,124 m*n= 8,03 Column 2,27 L= n b= 0,1 m m d Volado b(cm) s(cm) 10 0 Columna Mampostería Pared Ac(cm2) b(cm) Viga 10 31 41,5 10 37,8 42 37,5 10 41 10 39 42,3 Columna 10 38 41,5 10 37,5 36,5 42,8 10 43 10 36,8 45,7 10 36,8 45,7 10 36,9 50,5 2. CALIDAD DEL SISTEMA RESISTENTE 12 Resistencia del hormigón (kg/cm2) Edad de la vivienda años Esclerómetro Mano de obra SI R1 210 R11 240 calificada NO R2 210 R12 220 Х R3 220 R13 210 R4 220 R14 220 SI Zonas de Hormiguero NO Χ R5 220 R15 220 R6 R16 220 240 Acero visible SI R7 210 R17 210 y oxidado NO R18 210 Х R8 210

Juntas de construcción

mal ejecutadas

SI

R9

R10

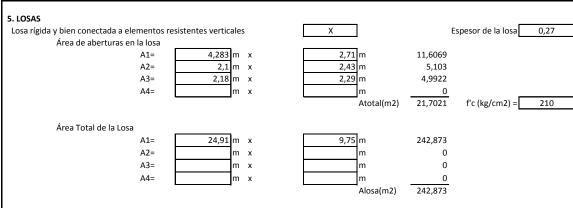
Promedio.

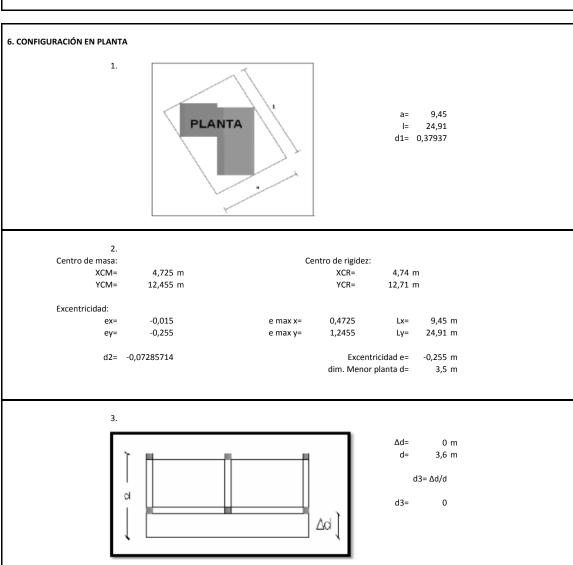
210

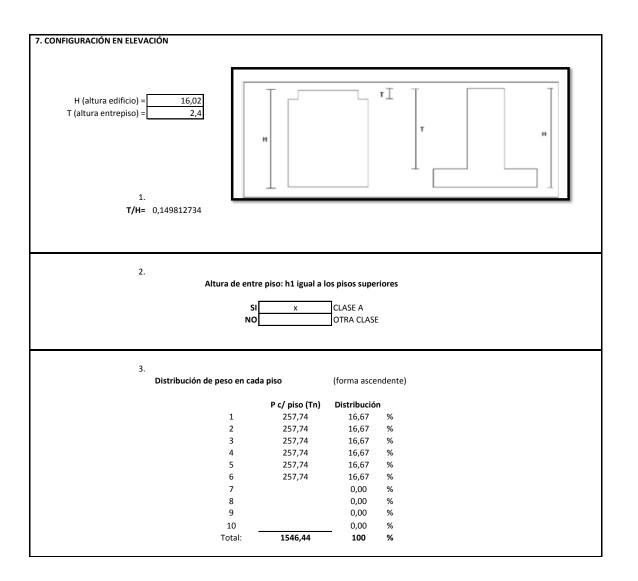
240

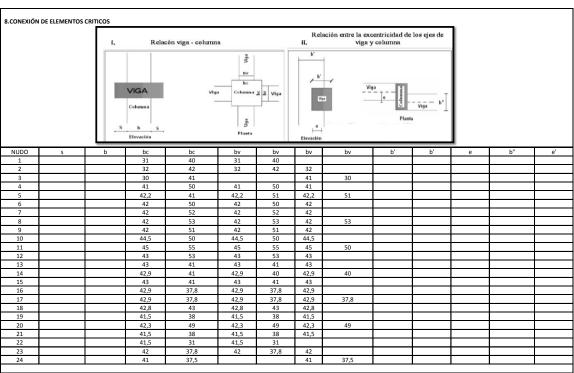
R19

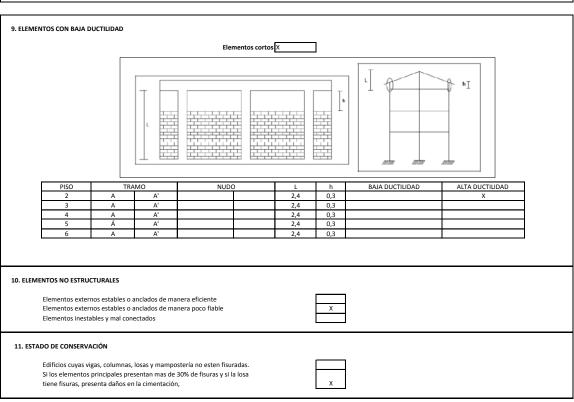
R20


220


240


3. CALIDAD DE LA RESIS	A RESISTENCIA CONVENCIONAI $\alpha = -$		$\alpha = \frac{V_R}{V_S}$		# total de co	umnas	24
		N1	N2	N3	N4	N5	N6
COLLINANIAS	a (cm)	31	37,8	37,5	49	38	37,5
COLUMNAS	b (cm)	41,5	42	41	42,3	41,5	36,5
VIGAS	a (cm)	25,3	25,3	25,3	25,3	25,3	25,3
	b (cm)	41,5	42	41	42,3	41,5	36,5


	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	Øe	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5	_	
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas descolgadas y con	8
I=	1,5	muros estructurales de hormigon armado o con	°
		diagonales rigidizadoras (sistemas duales)	
Sa (Ta)=	0,572	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con	′
		diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	8
		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	-
		hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	-
		hormigon armado con vigas banda	5
W = d	1546,43 Tn		
d= Carga muei	ta de la estructura		
Vs=	165,8546175 Tn		
		f'c= 220 Kg/cm2	
		b= 30 cm	
Vr = 0.14	$*\lambda*\sqrt{f'c}*b*d$	d= 40 cm	
		N columnas 24	
Vr=	59,8042246 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

M	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	DE EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"C"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	В	2	0,5	1
5. Losas	В	3	1	3
6. Configuración en planta	В	3	0,5	1,5
7. Configuración en elevación	Α	0	1	0
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	С	6	1	6
10. Elementos no estructurales	В	4	0,25	1
11. Estado de conservación	C	20	1	20
			Total	74,75
			Nivel de Vulnerabilidad	ALTA

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "D" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Х Ladrillo Regular Otros Mala ii. Huecos en paneles 2,195 2,185 3,84 2,2 3,53 3,84 d= n= 1,28 2,2 1,275 1,28 m= 2,635 2,46 Mamposteria Viga o losa MAS CRITICO L*d= 4,84 m*n= 4,84 Column 2,2 L= n 0,15 b= m d Volado b(cm) s(cm) 0 Columna Mampostería Pared Ac Ac(cm2) b(cm) Viga 15 26 50 15 32,5 50 15 38 50 50 15 40 Columna 15 35 48,5 15 41 59,5 40 51 15 15 39 49 15 36,5 50 15 38 47 2. CALIDAD DEL SISTEMA RESISTENTE Edad de la vivienda 25 Resistencia del hormigón (kg/cm2) años Esclerómetro Mano de obra 200 R11 SI Χ R1 calificada NO R2 R12 R3 R13 SI R4 R14 Zonas de Hormiguero NO Х R5 R15 R6 R16 Acero visible R7 R17 SI NO R18 y oxidado R8 Х R9 R19

R10

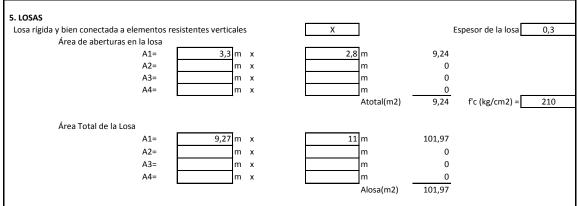
Promedio

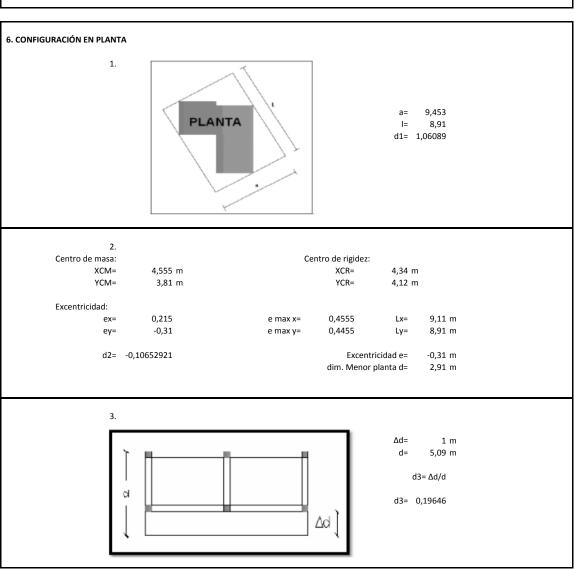
Juntas de construcción

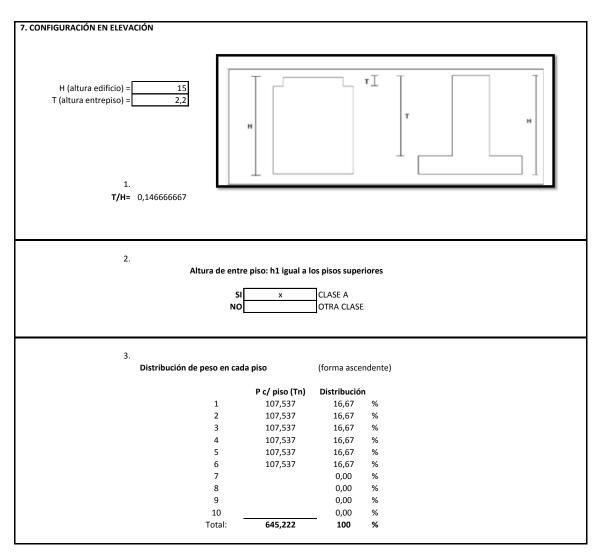
mal ejecutadas

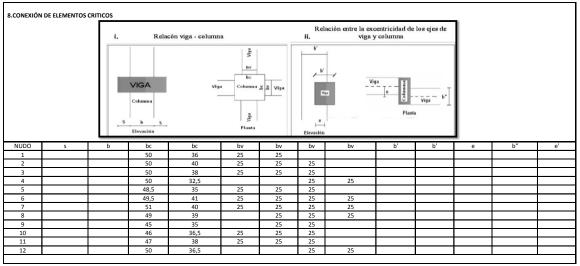
SI

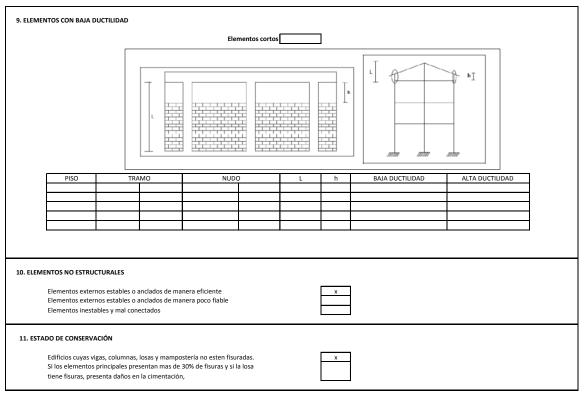
NO


R20


200


3. CALIDAD DE LA RESIST	CALIDAD DE LA RESISTENCIA CONVENCIONAL		$\alpha = \frac{V_R}{V_S}$		# total de co	lumnas	12
		N1	N2	N3	N4	N5	N6
COLUMNAS	a (cm)	32,5	38	40	26	35	40
COLUMNAS	b (cm)	50	50	50	50	48,5	51
VICAC	a (cm)	25	25	25	25	25	25
VIGAS	b (cm)	30	30	30	30	30	30


	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	<mark>Øe</mark> ^{∗ vv}	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5	-	
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas descolgadas y con	8
I=	1,5	muros estructurales de hormigon armado o con	
		diagonales rigidizadoras (sistemas duales)	
Sa (Ta)=	0,554	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con	
_		diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	8
		hormigon armado con vigas descolgadas	
Øe=	1	Sistema de muros estructurales ductiles de	5
Carra Siamina Basatina		hormigon armado	
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5
W = d	C45 222 To	hormigon armado con vigas banda	J
w = a d= Carga muerta d	645,223 Tn		
u- carga muerta u	e la estructura		
Vs=	67,02253913 Tn		
		f'c= 210 Kg/cm2	
		b= 35 cm	
$Vr = 0.14 * \lambda$	$*\sqrt{f'c}*b*d$	d= 45 cm	
,	V)	N columnas 12	
Vr=	38,34418287 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION Empujes no equillibrados Se puede valorar el perfil de suelo SI [] NO [] Rodaduras horizontales en paredes (En caso de NO se utilizara el mapa de zonificación sísmica) Próximo a una colina Topografía Perfil del suelo Plana Roca de rigidez media Pendiente <15% Roca competente Pendiente <30% Roca blanda Pendiente >30% Pendiente >60%

FICHA DE EVALUACIÓN DEL ÍNDICE NOMB	DE VULNERABILIDAD FÍSICO RE DEL EDIFICIO: 1		E EDIFICIOS	
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTA
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	C	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	В	3	0,5	1,5
7. Configuración en elevación	Α	0	1	0
8. Conexión elementos criticos	Α	0	0,75	0
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	А	0	0,25	0
11. Estado de conservación	A	0	1	0
			Total	41,
			Nivel de Vulnerabilidad	MED

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "E" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Х Ladrillo Regular Otros Mala ii. Huecos en paneles 2,49 2,49 2,49 2,495 2,51 4,52 6,48 4,23 4,58 3,8 d= n= 1,7 1,7 1,7 1,65 1,7 4,16 4,25 2,45 1,285 2,9 m= Mampostería Viga o losa MAS CRITICO L*d= 11,25 m*n= 7,07 Column 2,5 L= n 0,2 b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 20 46,3 45 20 45 47,6 20 56 56 20 43 46 Columna 20 46 46 20 54 54 20 45,5 41,5 20 45 41 20 51 41 20 45 45 2. CALIDAD DEL SISTEMA RESISTENTE años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI R1 240 R11 210 calificada NO R2 240 R12 240 Х 240 R3 R13 220 SI R4 220 R14 240 Zonas de Hormiguero NO Χ R5 240 R15 220 R6 250 R16 Acero visible SI R7 240 R17 y oxidado NO R8 220 R18 Χ R9 240 R19

R10

Promedio.

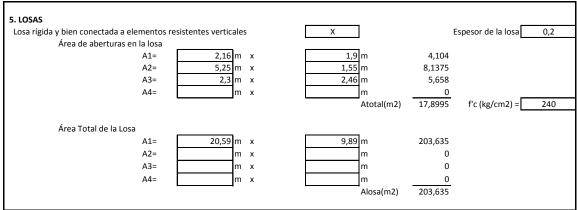
Juntas de construcción

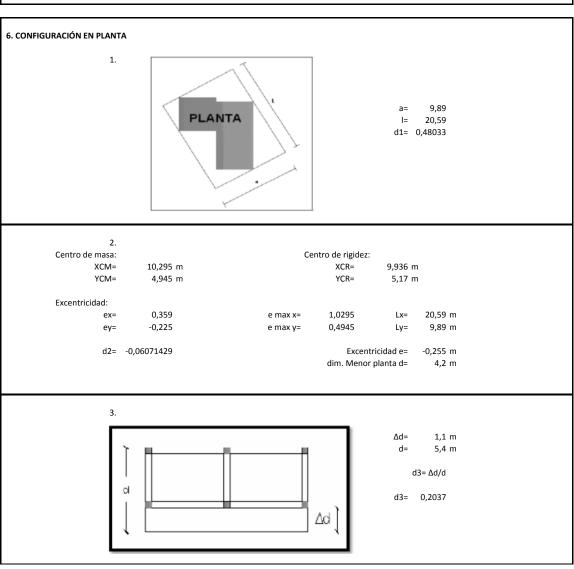
mal ejecutadas

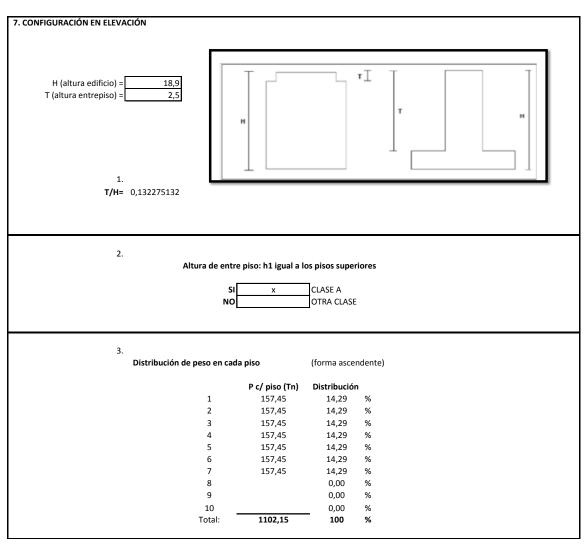
SI

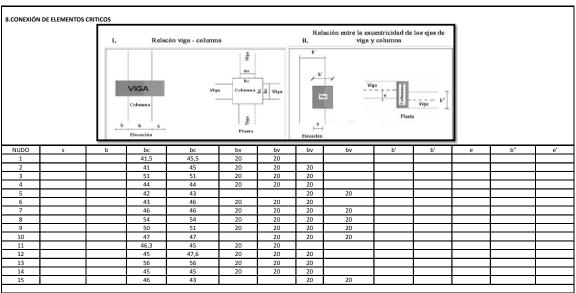
NO

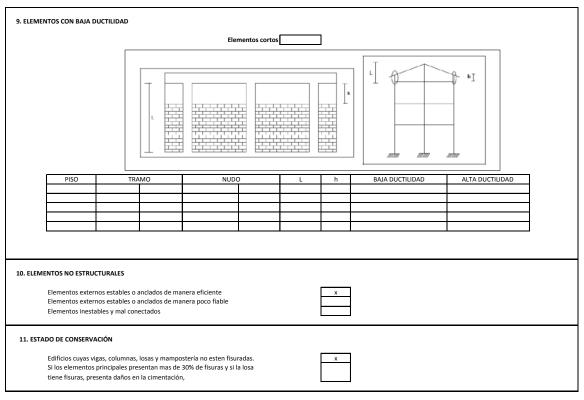
R20


231,3333333


210


3. CALIDAD DE LA RESISTENCIA CONVENCIONAL		ICIONAL	$\alpha = \frac{V_R}{V_S}$		# total de columnas		
		N1	N2	N3	N4	N5	N6
COLUMNAS	a (cm)	46,3	45	56	43	46	45,5
	b (cm)	45	47,6	56	46	46	41,5
VIGAS	a (cm)	20	20	20	20	20	20
	b (cm)	20	20	20	20	20	20


Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5	_	
Estructuras de ocupacion espe	ecial 1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas descolgadas y con	8
I=	1,5	muros estructurales de hormigon armado o con	ŭ
		diagonales rigidizadoras (sistemas duales)	
Sa (Ta)=	0,2	Porticos especiales sismo resistentes, de	7
		hormigon armado con vigas banda, con muros	
R=	8	estructurales de hormigon armado o con diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	8
		hormigon armado con vigas descolgadas	٥
Øe=	1	Sistema de muros estructurales ductiles de hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de hormigon armado con vigas banda	5
W = d	1102,17 Tn	normigon armado con vigas banda	
	irga muerta de la estructura		
Vs=	41,331375 Tn		
		f'c= 231,33 Kg/cm2	
	- · · · · · · · · · · · · · · · · · · ·	b= 42 cm	
Vr=	$= 0.14 * \lambda * \sqrt{f'c} * b * d$	d= 43 cm	
		N columnas 15	
Vr=	57,68368806 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION	
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo SI [] NO [] (En caso de NO se utilizara el mapa de zonificación sísmica)
Topografía	Perfil del suelo
Plana x	Roca de rigidez media
Pendiente <15%	Roca competente
Pendiente <30%	Roca blanda x
Pendiente >30%	
Pendiente >60%	

	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE			E EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"E"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTA
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	В	11	1	11
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	В	3	0,5	1,5
7. Configuración en elevación	Α	0	1	0
8. Conexión elementos criticos	Α	0	0,75	0
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	Α	0	0,25	0
11. Estado de conservación	Α	0	1	0
			Total	30,5
			Nivel de Vulnerabilidad	BAJA

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "F' 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Ladrillo Regular Mala Otros ii. Huecos en paneles 2,23 1,04 1,8 2,06 1,96 d= n= 1,54 0,45 1,53 1,35 0,64 1,47 2,23 0,85 0,99 1,96 1,8 m= Mampostería Viga o losa MAS CRITICO L*d= 5,26 m*n= 3,43 Column 2,36 L= n 0,15 b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 40,1 40,6 49,7 15 45,1 15 50,1 44,8 15 50 45 Columna 15 50 44,9 15 55 50 49,9 15 45,1 15 49,8 45 15 50 44,8 15 49,8 45 2. CALIDAD DEL SISTEMA RESISTENTE 12 años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI R1 210 R11 210 calificada NO R2 210 R12 210 Х R3 210 R13 220 SI R4 220 R14 220 Zonas de Hormiguero NO Χ R5 210 R15 210 R6 220 R16 210 Acero visible SI R7 210 R17 210 y oxidado 210 NO R8 210 R18 Χ

Juntas de construcción

mal ejecutadas

SI

NO

R9

R10

Promedio.

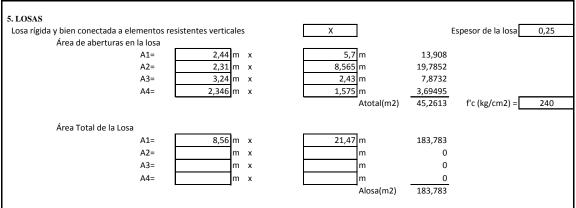
210

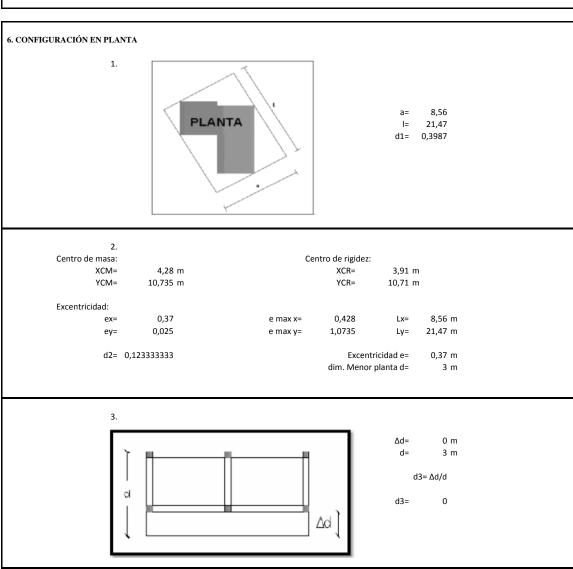
210

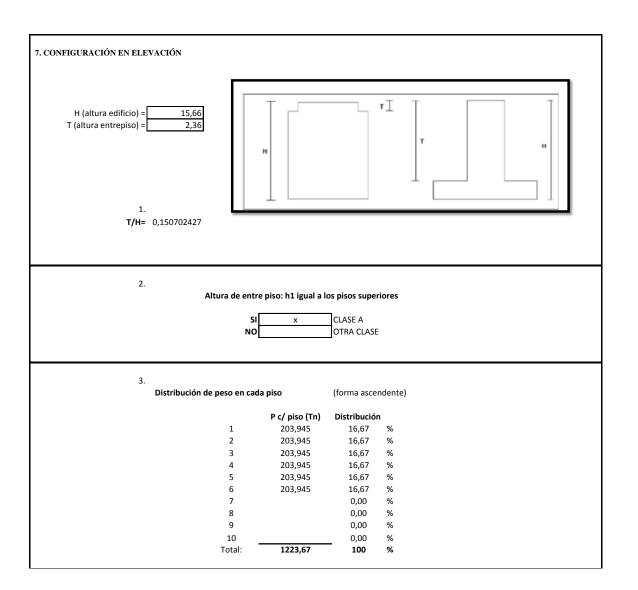
R19

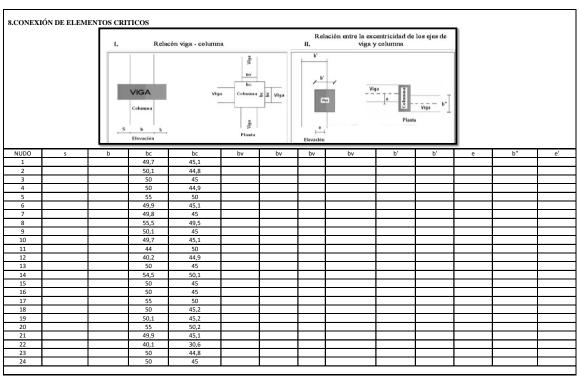
R20

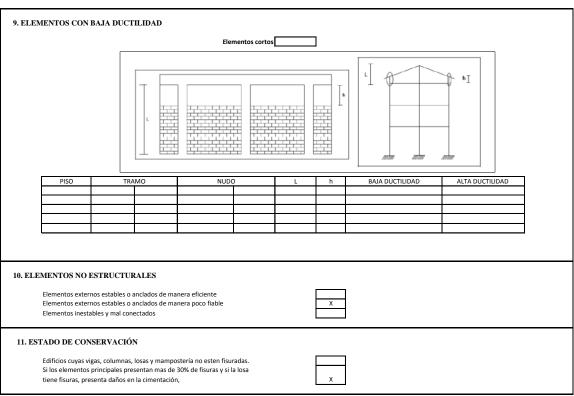
210


210


212


3. CALIDAD DE LA RESISTENCIA CONVENCIONAL			$\alpha = \frac{V_R}{V_S}$		# total de col	umnas	24
		N1	N2	N3	N4	N5	N6
COLLINANIAC	a (cm)	49,7	50,1	50	50	55	49,9
COLUMNAS	b (cm)	45,1	44,8	45	44,9	50	45,1
VIGAS	a (cm)						
VIGAS	b (cm)						


$Vs = \frac{I * Sa(Ta)}{R * \emptyset p * \emptyset e} * W$										
Coeficiente de Importancia I										
Categoria	Coeficiente									
Edificaciones esenciales	1,5	_								
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R							
Otras estructuras	1	Porticos especiales sismo resistentes, de								
		hormigon armado con vigas descolgadas y con	8							
l=	1,5	muros estructurales de hormigon armado o con								
		diagonales rigidizadoras (sistemas duales)								
Sa (Ta)=	0,502	Porticos especiales sismo resistentes, de								
_		hormigon armado con vigas banda, con muros	7							
R=	8	estructurales de hormigon armado o con								
-		diagonales rigidizadoras								
Øp=	1	Porticos especiales sismo resistentes, de	8							
4 .		hormigon armado con vigas descolgadas								
Øe=	1	Sistema de muros estructurales ductiles de	5							
Compa Cinnaian Bounding		hormigon armado								
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5							
W = d	1222 C7 T-	hormigon armado con vigas banda								
	1223,67 Tn									
d= Carga muerta d	de la estructura									
Vs=	115,1779388 Tn									
	.,	f'c= 212 Kg/cm2								
		b= 40,1 cm								
$Vr = 0.14 * \lambda$	$*\sqrt{f'c}*b*d$	d= 40,6 cm								
VI = 0,11 · A	() () () () ()	N columnas 24								
		21								
Vr=	79,64850235 Tn									
	•									


4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía	Perfil del suelo				
Plana x	Roca de rigidez media				
Pendiente <15%	Roca competente				
Pendiente <30%	Roca blanda x				
Pendiente >30%					
Pendiente >60%]				

M	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	DE EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"F"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	В	3	0,5	1,5
7. Configuración en elevación	Α	0	1	0
8. Conexión elementos criticos	Α	0	0,75	0
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	В	4	0,25	1
11. Estado de conservación	С	20	1	20
			Total	62,5
			Nivel de Vulnerabilidad	ALTA

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "G" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Х Ladrillo Regular Otros Mala ii. Huecos en paneles 2,42 5,5 5,5 3,42 3,04 d= n= 1,515 1,57 1,31 1,505 2,79 2,22 2,547 1,58 m= Mampostería Viga o losa MAS CRITICO L*d= m*n= 3,34 Column 2,84 L= n 0,15 b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 55 34,8 15 55 35,1 15 55,1 34,9 15 55 35 Columna 15 55 35,2 15 60 55 15 60,1 55,1 15 55,1 34,8 55,1 15 35 15 59,9 54,9 2. CALIDAD DEL SISTEMA RESISTENTE años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI R1 240 R11 240 calificada NO R2 210 R12 240 Х R3 240 R13 250 SI R4 260 R14 210 Zonas de Hormiguero NO Χ R5 250 R15 260 R6 210 R16 210 Acero visible SI R7 210 R17 220 y oxidado 240 NO R8 210 R18 Χ

Juntas de construcción

mal ejecutadas

SI

NO

R9

R10

Promedio.

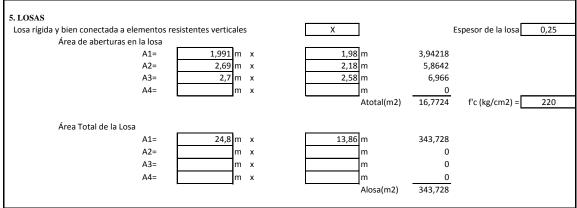
240

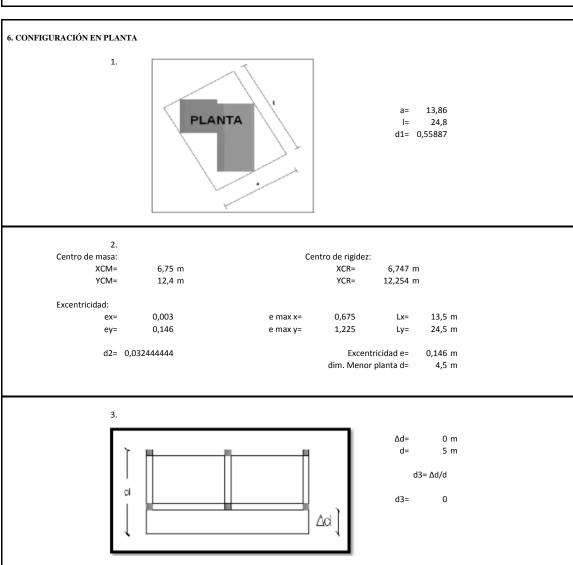
250

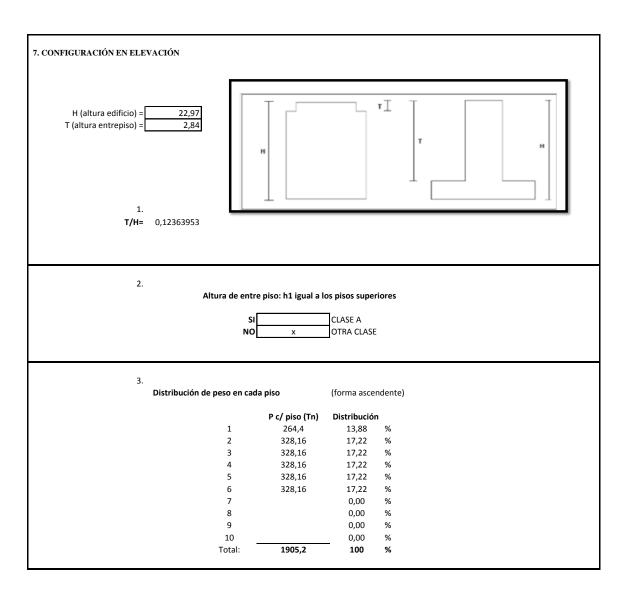
R19

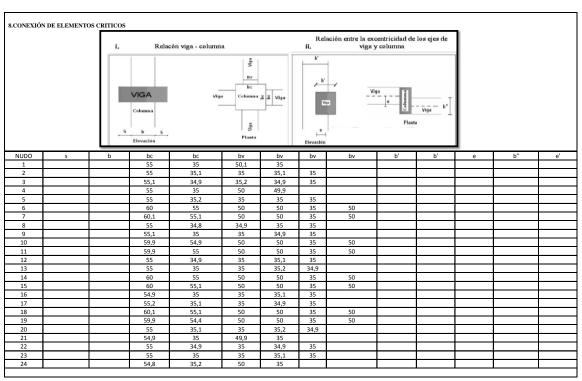
R20

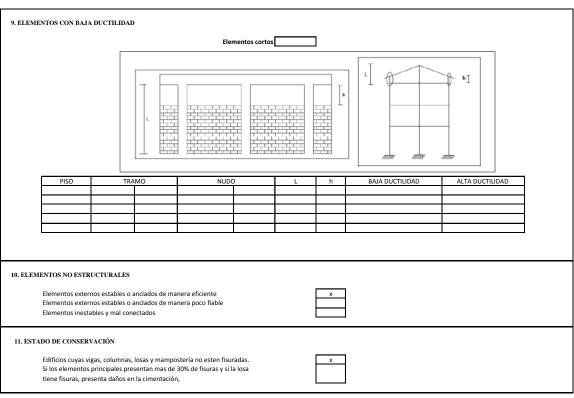
220


220


231,5


3. CALIDAD DE LA RESIS	TENCIA CONVEN	CIONAL $lpha = rac{V_R}{V_S}$ # total de columnas				24	
		N1	N2	N3	N4	N5	N6
COLLINANIAS	a (cm)	55	55	55,1	55	55	60
COLUMNAS	b (cm)	35	35,1	34,9	35	35,2	55
VIGAS	a (cm)	50,1	35	35	35,1	35	50
VIGAS	b (cm)	30,1	30	29,9	30	30,1	29,9


Coeficiente de Importancia I Categoria Edificaciones esenciales Estructuras de ocupacion espe Otras estructuras I= Sa (Ta)=	Coeficiente 1,5 1,3 1 1,5	Sistemas Estructurales Ductiles Porticos especiales sismo resistentes, de hormigon armado con vigas descolgadas y con	R
Edificaciones esenciales Estructuras de ocupacion espe Otras estructuras	1,5 icial 1,3 1	Porticos especiales sismo resistentes, de	R
Estructuras de ocupacion espe Otras estructuras I=	rcial 1,3 1	Porticos especiales sismo resistentes, de	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	R
l=	_	·	
	1,5	hormigon armado con vigas descolgadas y con	
	1,5		8
Sa (Ta)=		muros estructurales de hormigon armado o con	٠
Sa (Ta)=		diagonales rigidizadoras (sistemas duales)	
	0,468	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con	′
		diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	-
		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	
		hormigon armado	5
Carga Sismica Rea	ctiva	Porticos especiales sismo resistentes de	
		hormigon armado con vigas banda	5
W = d	1905,2 Tn	_	
d= Ca	rga muerta de la estructura		
Vs=	167,1813 Tn		
		f'c= 231,5 Kg/cm2	
		b= 55 cm	
Vr=	$= 0.14 * \lambda * \sqrt{f'c} * b * d$	d= 34,8 cm	
	·	N columnas 24	
Vr=	97,8490714 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI [1	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

M	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	E EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"G"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	В	6	1	6
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	Α	0	0,5	0
7. Configuración en elevación	В	3	1	3
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	Α	0	0,25	0
11. Estado de conservación	Α	0	1	0
			Total	39,25
			Nivel de Vulnerabilidad	MEDIA

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "H" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Calidad de mampostería: Buena Х Ladrillo Regular Otros Mala ii. Huecos en paneles 2,39 3,525 3,25 1,53 3,2 3,45 d= n= 1,76 1,52 1,09 1,525 1,5 2,48 1,53 1,56 1,55 m= Mampostería Viga o losa MAS CRITICO L*d= m*n= 4,365 Column 2,39 L= n 0,15 b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 34,1 40,5 15 54 53,5 15 58 53,6 15 54 53,5 Columna 15 34 40,7 15 55,1 50 40,7 15 34 15 54 53,5 15 34 40,7 15 34,15 40,6 2. CALIDAD DEL SISTEMA RESISTENTE años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI Χ R1 320 R11 310 calificada NO R2 310 R12 320 R3 320 R13 320 SI R4 320 R14 320 Zonas de Hormiguero NO Χ R5 310 R15 340 R6 310 R16 340 Acero visible 320 SI R7 340 R17 y oxidado 320 NO R8 320 R18 Χ

Juntas de construcción

mal ejecutadas

SI

NO

R9

R10

Promedio.

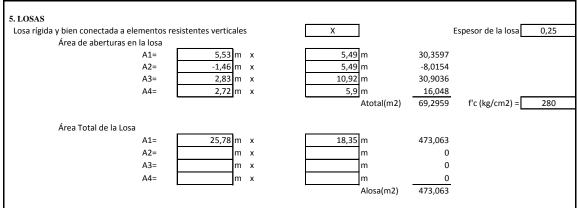
320

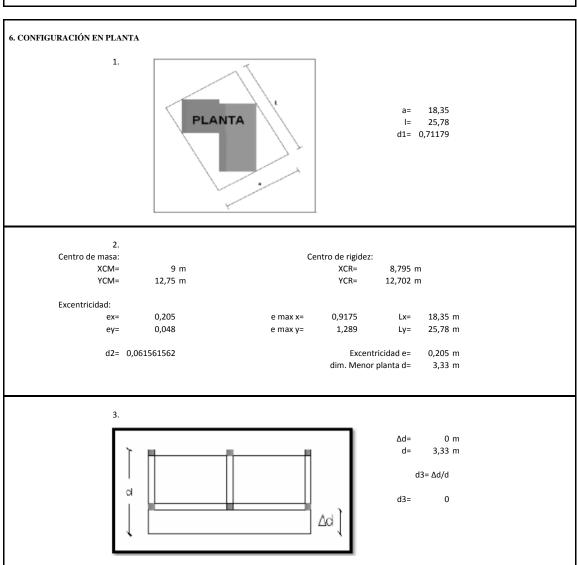
310

R19

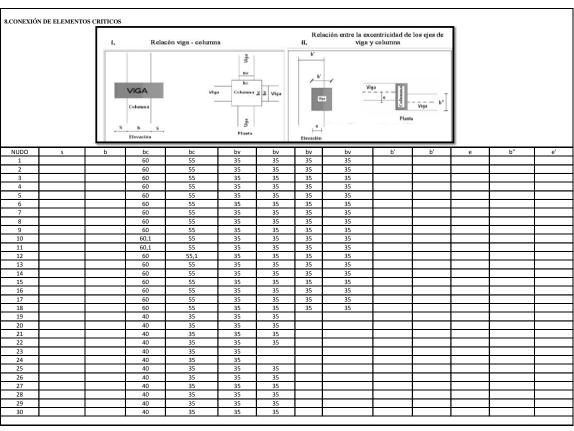
R20

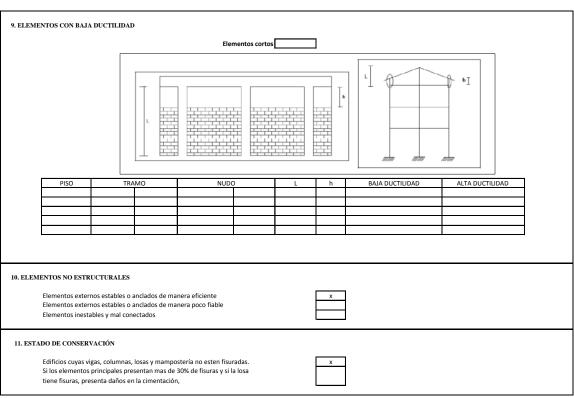
320


320


320,5

3. CALIDAD DE LA RESIS	TENCIA CONVEN	CIONAL	$\alpha = \frac{V_R}{V_S}$		# total de col	umnas	40
		N1	N2	N3	N4	N5	N6
COLLINANIAC	a (cm)	40	60	60,1	60	40	60
COLUMNAS	b (cm)	35	55	55	55,1	35	55
VICAS	a (cm)	35	35,1	34,9	35	35	35
VIGAS	b (cm)	20	20,1	20	20,2	20	19,9


$Vs = \frac{I * Sa(Ta)}{R * \emptyset p * \emptyset e} * W$									
Coeficiente de Importancia I									
Categoria	Coeficiente								
Edificaciones esenciales	1,5	_							
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R						
Otras estructuras	1	Porticos especiales sismo resistentes, de							
		hormigon armado con vigas descolgadas y con	8						
I=	1,5	muros estructurales de hormigon armado o con	0						
		diagonales rigidizadoras (sistemas duales)							
Sa (Ta)=	0,365	Porticos especiales sismo resistentes, de							
		hormigon armado con vigas banda, con muros	7						
R=	8	estructurales de hormigon armado o con	′						
		diagonales rigidizadoras							
Øp=	1	Porticos especiales sismo resistentes, de	8						
		hormigon armado con vigas descolgadas	0						
Øe=	1	Sistema de muros estructurales ductiles de	5						
		hormigon armado	J						
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5						
		hormigon armado con vigas banda	3						
W = d	3241,99 Tn	_							
d= Carga muerta d	de la estructura								
Vs=	221,8736906 Tn								
		f'c= 320,5 Kg/cm2							
		b= 34,1 cm							
$Vr = 0.14 * \lambda$	$*\sqrt{f'c}*b*d$	d= 40,5 cm							
		N columnas 40							
Vr=	138,4558933 Tn								


4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES D	E EDIFICIOS	
NOMB	RE DEL EDIFICIO: '	'H''		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTA
1. Organización del sistema resistente	В	6	1	6
2. Calidad del sistema resistente	С	12	0,5	6
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	А	0	0,5	0
5. Losas	А	0	1	0
6. Configuración en planta	А	0	0,5	0
7. Configuración en elevación	В	3	1	3
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	А	0	1	0
10. Elementos no estructurales	A	0	0,25	0
11. Estado de conservación	А	0	1	0
	•		Total	39,25
			Nivel de Vulnerabilidad	MEDI

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "I" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Χ Calidad de mampostería: Buena Х Ladrillo Regular Mala Otros ii. Huecos en paneles 2,8 3,2 4,1 2,3 3,7 3,5 3,43 d= n= 1,5 1,5 1,4 1,2 1,25 1,45 1,2 1,3 1,2 1,5 1,51 m= Mampostería Viga o losa MAS CRITICO L*d= 6,44 m*n= 2,1 Column 2,8 L= n 0,15 b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 33,5 44 15 46 64 15 46 64,1 15 45 63,7 Columna 15 43,5 64 15 64 53,7 43,9 63,8 15 15 44 63,6 15 53,7 63,5 15 43,6 67,5 2. CALIDAD DEL SISTEMA RESISTENTE 15 años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI Χ R1 260 R11 220 calificada NO R2 260 R12 260 R3 260 R13 240 SI R4 210 R14 240 Zonas de Hormiguero NO Χ R5 240 R15 260 R6 240 R16 260 Acero visible 220 SI R7 220 R17 y oxidado 220 NO R8 260 R18 Χ

Juntas de construcción

mal ejecutadas

SI

NO

R9

R10

Promedio.

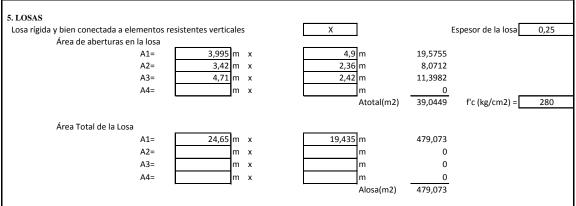
240

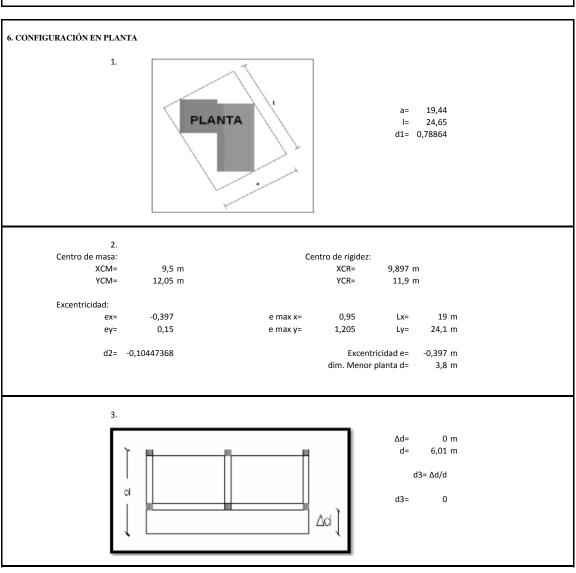
240

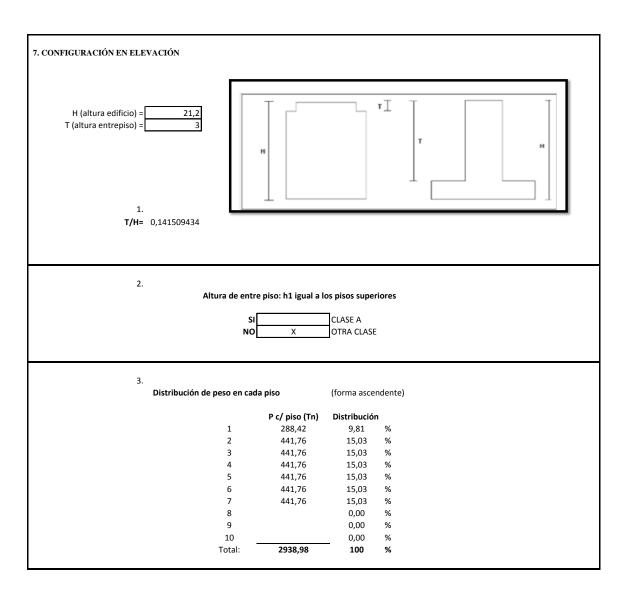
R19

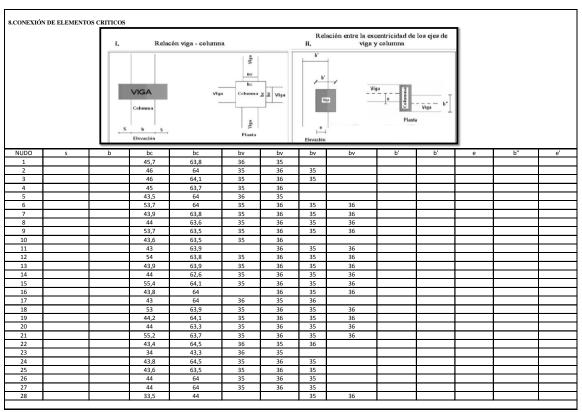
R20

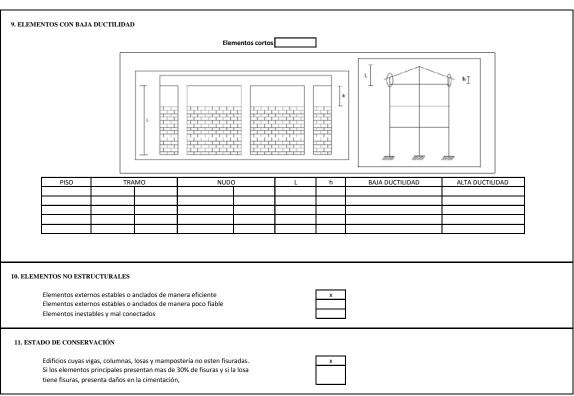
240


220


240,5


3. CALIDAD DE LA RESISTENCIA CONVENCIONAL		ICIONAL	$lpha = rac{V_R}{V_S}$ # total de columnas				28	
		N1	N2	N3	N4	N5	N6	
60111141146	a (cm)	45,7	46	46	45	43,5	53,7	
COLUMNAS	b (cm)	63,8	64	64,1	63,7	64	64	
VIGAS	a (cm)	35	35	36	35	35	35	
	b (cm)	20	20,1	20	20,3	20,4	20,1	


	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	Øe ^{∗ w}	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5		
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
I=	1,5	hormigon armado con vigas descolgadas y con	8
!-	1,3	muros estructurales de hormigon armado o con	
Sa (Ta)=	0,365	diagonales rigidizadoras (sistemas duales) Porticos especiales sismo resistentes, de	
3a (1a)-	0,303	hormigon armado con vigas banda, con muros	
R=	8	estructurales de hormigon armado o con	7
•	· ·	diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	-
		hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5
		hormigon armado con vigas banda	5
W = d	3241,99 Tn		
d= Carga muerta	de la estructura		
Vs=	221,8736906 Tn		
	,	f'c= 320,5 Kg/cm2	
		b= 34,1 cm	
$Vr = 0.14 * \lambda$	$1*\sqrt{f'c}*b*d$	d= 40,5 cm	
ŕ	V ,	N columnas 40	
Vr=	138,4558933 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

M	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	DE EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"I"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	Α	0	0,5	0
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	Α	0	0,5	0
7. Configuración en elevación	В	3	1	3
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	Α	0	0,25	0
11. Estado de conservación	Α	0	1	0
			Total	39,25
			Nivel de Vulnerabilidad	MEDIA

MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "J" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Х Calidad de mampostería: Buena Х Ladrillo Regular Otros Mala ii. Huecos en paneles 2,67 2,67 2,685 4,04 4,42 4,49 10,48 8,46 d= n= 2,25 2,25 2,25 2,265 2,25 4,04 4,42 4,49 9,95 8,46 m= Mampostería Viga o losa MAS CRITICO L*d= m*n= 19,035 Column 2,67 L= n 0,15 m b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 45 45 15 54 45 15 64 43 15 65 45 Columna 15 45 45 2. CALIDAD DEL SISTEMA RESISTENTE 17 años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI Χ R1 290 R11 320 calificada NO R2 280 R12 320 R3 310 R13 310 SI R4 320 R14 320 Zonas de Hormiguero NO Χ R5 310 R15 310 R6 320 R16 310 Acero visible SI R7 320 R17 310 y oxidado R18 280 NO R8 310 Χ

Juntas de construcción

mal ejecutadas

SI

NO

R9

R10

Promedio.

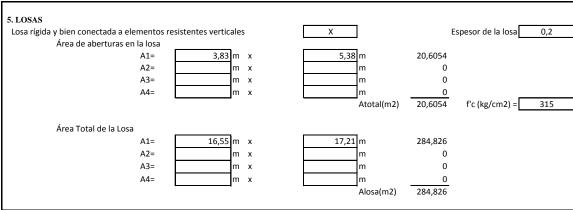
290

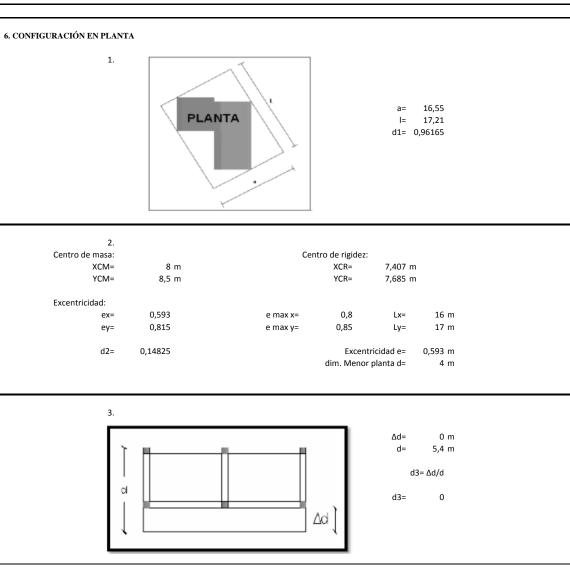
280

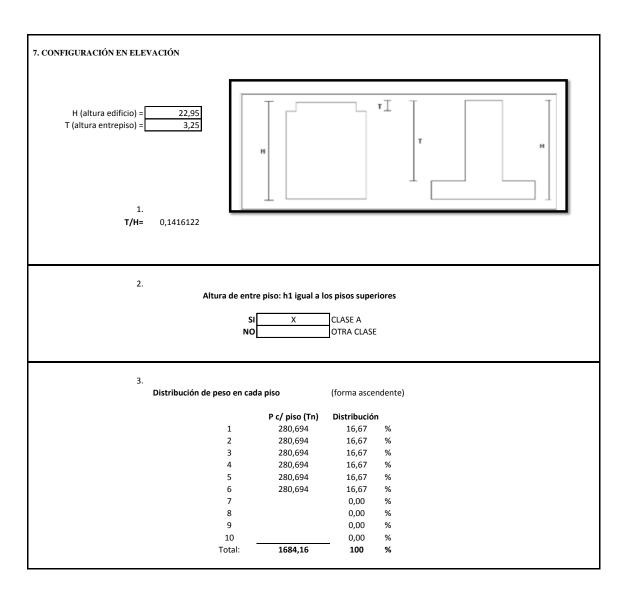
R19

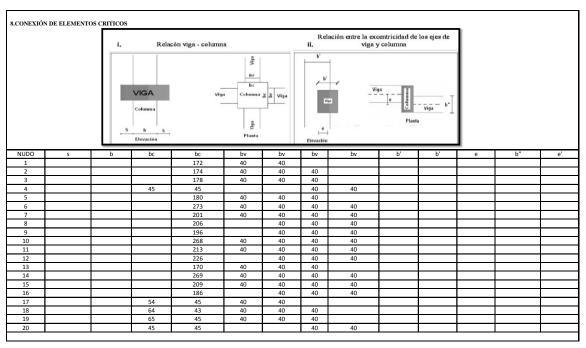
R20

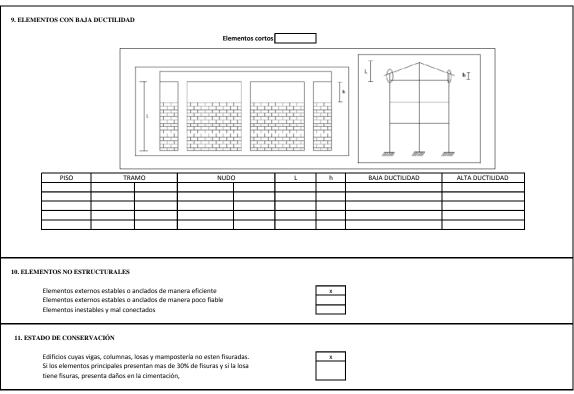
310


320


307


3. CALIDAD DE LA RESISTENCIA CONVENCIONAL		CIONAL	$\alpha = \frac{V_R}{V_S}$		# total de co	umnas	20
		N1	N2	N3	N4	N5	N6
COLUMNAS	a (cm)	45	45				
COLOIVINAS	b (cm)	45	45	170	269	209	186
VIGAS	a (cm)	40	40	40	40	40	40
VIGAS	b (cm)	30	30	30	30	30	30


	$Vs = \frac{I * Sa(T)}{R * \emptysetp *}$	o ≠ W o e + W	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5	_	
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas descolgadas y con	8
I=	1,5	muros estructurales de hormigon armado o con	ĭ
		diagonales rigidizadoras (sistemas duales)	
Sa (Ta)=	1,068	Porticos especiales sismo resistentes, de	
		hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con	′
		diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	8
		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	5
		hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5
		hormigon armado con vigas banda	5
W = d	1684,164 Tn	_	
d= Carga muerta	de la estructura		
Vs=	337,253841 Tn		
		f'c= 307 Kg/cm2	
		b= 45 cm	
Vr = 0.14 *	$\lambda * \sqrt{f'c} * b * d$	d= 45 cm	
		N columnas 20	
Vr=	99,3464257 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

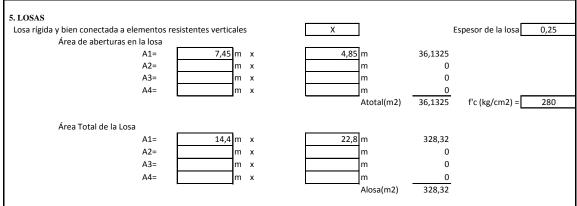
M	ÉTODO ITALIANO			
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	DE EDIFICIOS	
NOMB	RE DEL EDIFICIO:	"J"		
	Tabla de Resumen			
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL
1. Organización del sistema resistente	С	12	1	12
2. Calidad del sistema resistente	Α	0	0,5	0
3. Resistencia convencional	С	22	1	22
4. Posición del edifico y cimentación	Α	0	0,5	0
5. Losas	Α	0	1	0
6. Configuración en planta	Α	0	0,5	0
7. Configuración en elevación	Α	0	1	0
8. Conexión elementos criticos	В	3	0,75	2,25
9. Elementos de baja ductilidad	Α	0	1	0
10. Elementos no estructurales	Α	0	0,25	0
11. Estado de conservación	Α	0	1	0
			Total	36,25
			Nivel de Vulnerabilidad	MEDIA

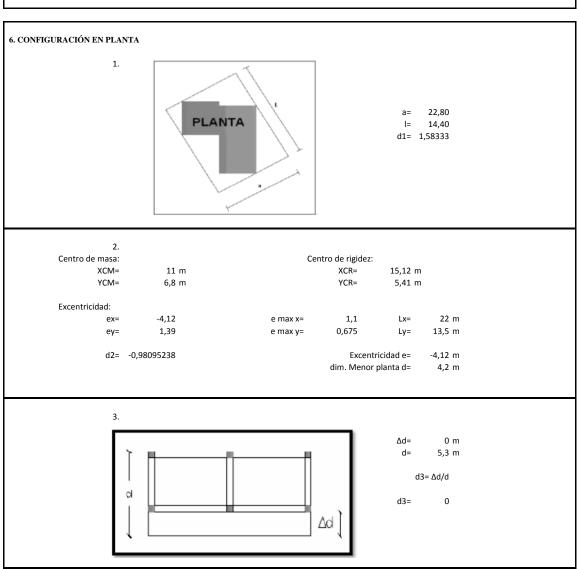
MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "K' 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte mamposteria confinada Mampostería de: Bloque Χ Calidad de mampostería: Buena Ladrillo Regular Otros Mala ii. Huecos en paneles 2,37 m 3,05 4,33 3,37 3,38 4,7 4,32 2,79 3,37 m d= n= 2,17 2,17 2,17 2,17 2,17 2,17 2,17 2,37 m 3,05 4,33 3,37 3,38 4,7 4,32 2,79 3,37 m m= Mampostería Viga o losa MAS CRITICO L*d= 7,987 m*n= 7,987 Column 2,37 L= n 0,15 m b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 68 68 15 67 67 15 67 79 69,5 15 69 Columna 15 64 64 15 76 77 15 75 75 15 75 60 15 63 65 15 66,5 67,5

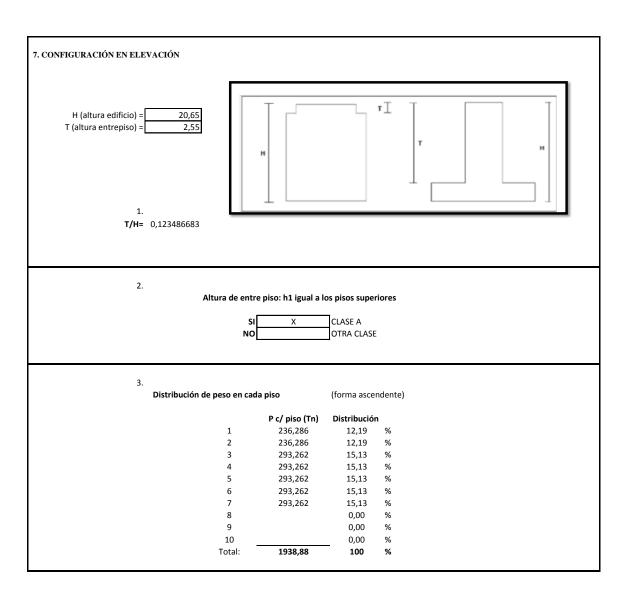
2. CALIDAD DEL SISTEMA RESISTENTE

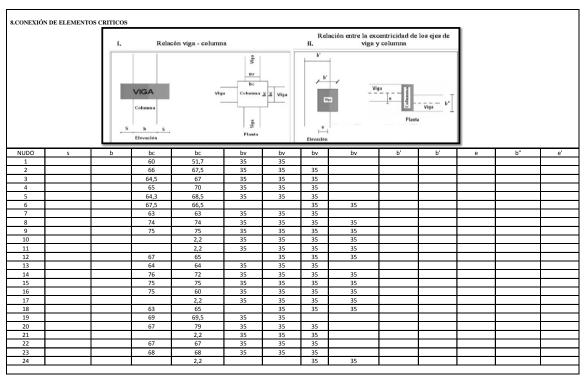
Edad de la vivienda	10	años
Mano de obra	SI	Тх
calificada	NO	
	SI	
Zonas de Hormiguero	NO	Х
Acero visible	SI	
y oxidado	NO	Х
Juntas de construcción	SI	
mal ejecutadas	NO	Х

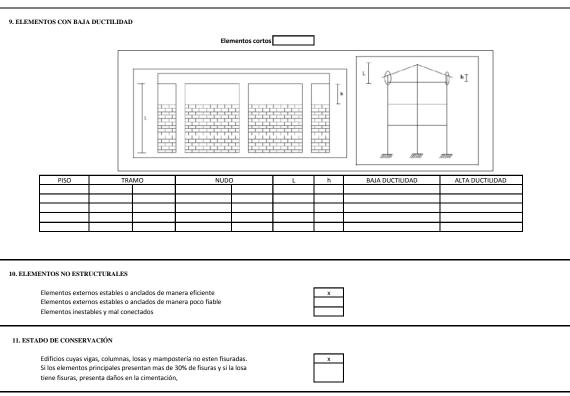
Re	sistencia del h	ormigón (k	(g/cm2)
	Escler	ómetro	
R1	280	R11	290
R2	280	R12	280
R3	280	R13	220
R4	290	R14	280
R5	240	R15	290
R6	290	R16	240
R7	240	R17	240
R8	280	R18	280
R9	280	R19	280
R10	280	R20	280
Prom	redio.		271

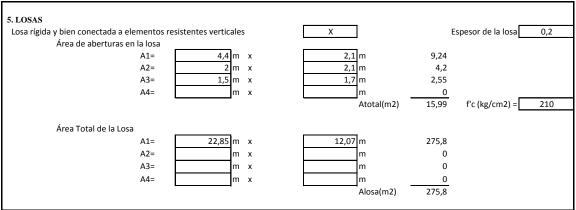

х

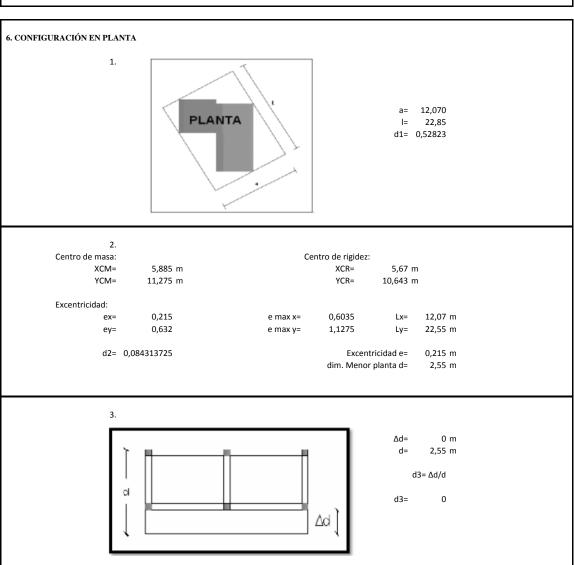

Х

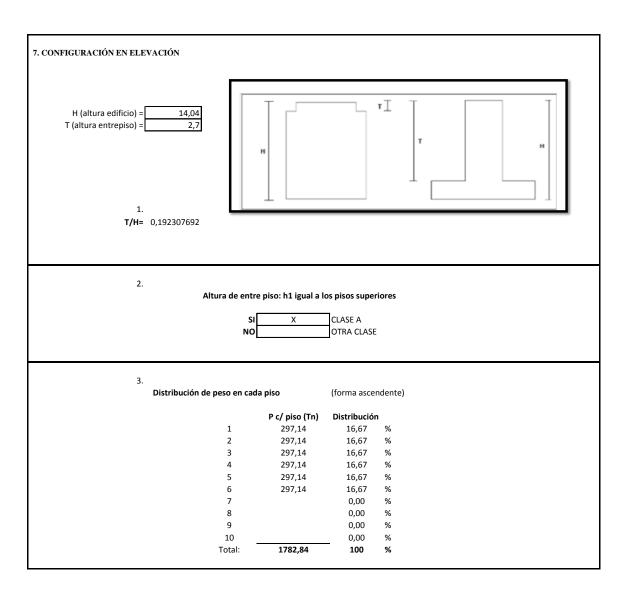

3. CALIDAD DE LA RESISTENCIA CONVENCIONAL		CIONAL	$\alpha = \frac{V_R}{V_S}$	# total de col	24		
		N1	N2	N3	N4	N5	N6
6011114116	a (cm)	68	67	67	69	64	76
COLUMNAS	b (cm)	68	67	79	69,5	64	77
VIGAS	a (cm)	35	35	35	35	35	35
	b (cm)	50	50	50	50	50	50

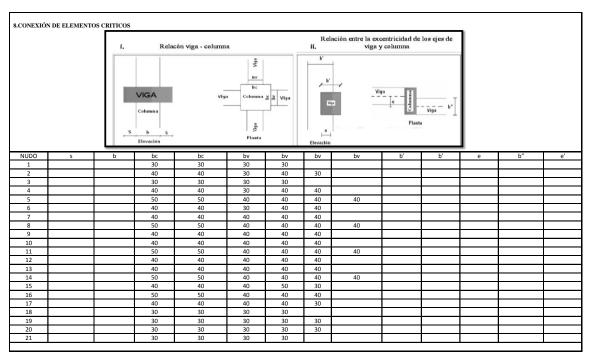

	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	a) Øe * W	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5		
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
	4.5	hormigon armado con vigas descolgadas y con	8
l=	1,5	muros estructurales de hormigon armado o con	
- 4- \		diagonales rigidizadoras (sistemas duales)	
Sa (Ta)=	1,068	Porticos especiales sismo resistentes, de	
_		hormigon armado con vigas banda, con muros	7
R=	8	estructurales de hormigon armado o con diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	0
		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	5
		hormigon armado	J
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5
		hormigon armado con vigas banda	J
W = d	1938,88 Tn		
d= Carga muerta o	le la estructura		
Vs=	388,26072 Tn		
		f'c= 271 Kg/cm2	
		b= 63 cm	
$Vr = 0.14 * \lambda * \sqrt{f'c} * b * d$		d= 65 cm	
		N columnas 24	
Vr=	226,5050186 Tn		
	α= 0,5833		

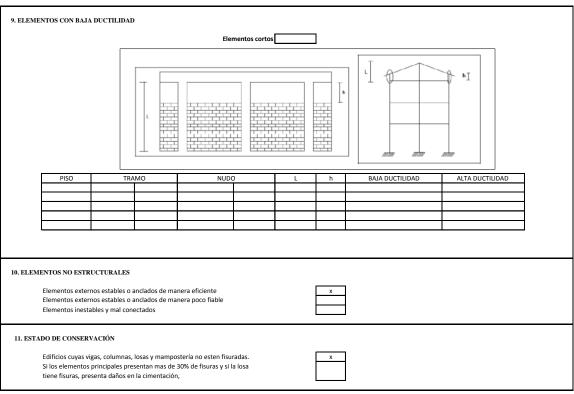

4. POSICIÓN DEL EDIFICIO Y CIMENTACION					
Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía	Perfil del suelo				
Plana x	Roca de rigidez media				
Pendiente <15%	Roca competente				
Pendiente <30%	Roca blanda x				
Pendiente >30%					
Pendiente >60%					
	•				


FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES D	E EDIFICIOS			
NOMB	RE DEL EDIFICIO: '	'K''				
Tabla de Resumen						
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTA		
1. Organización del sistema resistente	С	12	1	12		
2. Calidad del sistema resistente	А	0	0,5	0		
3. Resistencia convencional	С	22	1	22		
4. Posición del edifico y cimentación	А	0	0,5	0		
5. Losas	А	0	1	0		
6. Configuración en planta	С	6	0,5	3		
7. Configuración en elevación	А	0	1	0		
8. Conexión elementos criticos	А	0	0,75	0		
9. Elementos de baja ductilidad	А	0	1	0		
10. Elementos no estructurales	А	0	0,25	0		
11. Estado de conservación	А	0	1	0		
	•		Total	37		
			Nivel de Vulnerabilidad	MEDIA		


MÉTODO ITALIANO FICHA DE EVALUACIÓN DEL ÍNDICE DE VULNERABILIDAD FÍSICO ESTRUCTURALES DE EDIFICIOS NOMBRE DEL EDIFICIO: "L" 1. ORGANIZACIÓN DEL SISTEMA RESISTENTE i. Identificación del sistema resistente Portico mixto de hormigon armado y Muros de corte Х mamposteria confinada Mampostería de: Bloque Х Calidad de mampostería: Buena Х Ladrillo Regular Mala Otros ii. Huecos en paneles 5,25 d= n= 2,4 2,6 m= Mampostería Viga o losa MAS CRITICO L*d= 5,2628 m*n= 3,4342 Column 2,7 L= n 0,15 m b= m d Volado b(cm) s(cm) Columna Mampostería Pared Ac(cm2) b(cm) Viga 15 40 40 15 50 50 15 30 30 Columna 2. CALIDAD DEL SISTEMA RESISTENTE años Resistencia del hormigón (kg/cm2) Edad de la vivienda Esclerómetro Mano de obra SI Χ R1 210 R11 210 calificada NO R2 220 R12 220 R3 220 R13 210 SI R4 210 R14 210 Zonas de Hormiguero NO Χ R5 210 R15 220 R6 210 R16 220 Acero visible 210 SI R7 220 R17 y oxidado R18 220 NO R8 220 Χ R9 210 R19 210 Juntas de construcción R20 R10 220 220 SI mal ejecutadas NO Promedio. 215


3. CALIDAD DE LA RESIS	ALIDAD DE LA RESISTENCIA CONVENCIONAL		$\alpha = \frac{V_R}{V_S}$		# total de columnas		
		N1	N2	N3	N4	N5	N6
COLUMNAS	a (cm)	40	40	50	50	30	30
	b (cm)	40	40	50	50	30	30
VIGAS	a (cm)	30	30	40	40	30	30
VIGAS	b (cm)	30	30	50	50	30	30

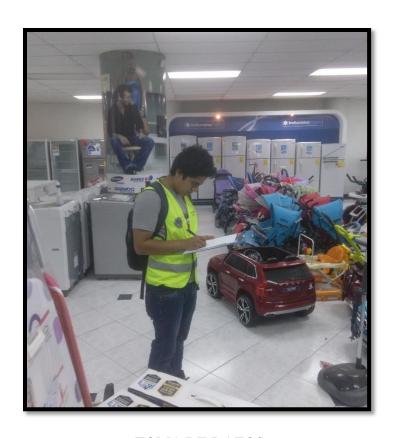

	$Vs = \frac{I * Sa(T)}{R * \emptyset p *}$	øe * W	
Coeficiente de Importancia I			
Categoria	Coeficiente		
Edificaciones esenciales	1,5		
Estructuras de ocupacion especial	1,3	Sistemas Estructurales Ductiles	R
Otras estructuras	1	Porticos especiales sismo resistentes, de	
I=	1,5	hormigon armado con vigas descolgadas y con	8
1-	1,3	muros estructurales de hormigon armado o con	
Sa (Ta)=	0,425	diagonales rigidizadoras (sistemas duales) Porticos especiales sismo resistentes, de	
3a (1a)-	0,423	hormigon armado con vigas banda, con muros	
R=	8	estructurales de hormigon armado o con	7
	3	diagonales rigidizadoras	
Øp=	1	Porticos especiales sismo resistentes, de	
•		hormigon armado con vigas descolgadas	8
Øe=	1	Sistema de muros estructurales ductiles de	_
		hormigon armado	5
Carga Sismica Reactiva		Porticos especiales sismo resistentes de	5
		hormigon armado con vigas banda	5
W = d	1782,84 Tn	_	-
d= Carga muerta	de la estructura		
Vs=	142,0700625 Tn		
		f'c= 215 Kg/cm2	
		b= 30 cm	
$Vr = 0.14 * \lambda$	$\lambda * \sqrt{f'c} * b * d$	d= 30 cm	
	·	N columnas 22	
Vr=	40,64549864 Tn		


4. POSICIÓN DEL EDIFICIO Y CIMENTACION Empujes no equillibrados Rodaduras horizontales en paredes Próximo a una colina	Se puede valorar el perfil de suelo (En caso de NO se utilizara el mapa de zonificación sísmica)	SI []	NO []
Topografía Plana x Pendiente <15% Pendiente <30% Pendiente >30% Pendiente >60%	Perfil del suelo Roca de rigidez media Roca competente Roca blanda x				

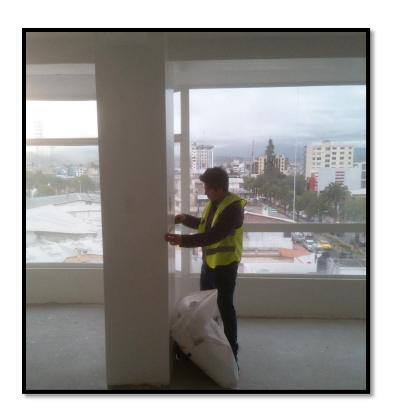
M	ÉTODO ITALIANO						
FICHA DE EVALUACIÓN DEL ÍNDICE	DE VULNERABILIDAD FÍSICO	ESTRUCTURALES I	E EDIFICIOS				
NOMB	RE DEL EDIFICIO:	"L"					
Tabla de Resumen							
PARÁMETRO	CLASE	VALOR	PONDERACIÓN	TOTAL			
1. Organización del sistema resistente	С	12	1	12			
2. Calidad del sistema resistente	Α	0	0,5	0			
3. Resistencia convencional	С	22	1	22			
4. Posición del edifico y cimentación	Α	0	0,5	0			
5. Losas	Α	0	1	0			
6. Configuración en planta	Α	0	0,5	0			
7. Configuración en elevación	Α	0	1	0			
8. Conexión elementos criticos	В	3	0,75	2,25			
9. Elementos de baja ductilidad	Α	0	1	0			
10. Elementos no estructurales	Α	0	0,25	0			
11. Estado de conservación	Α	0	1	0			
			Total	36,25			
			Nivel de Vulnerabilidad	MEDIA			

9.3. ANEXO 3. Anexo fotográfico

TOMA DE DATOS

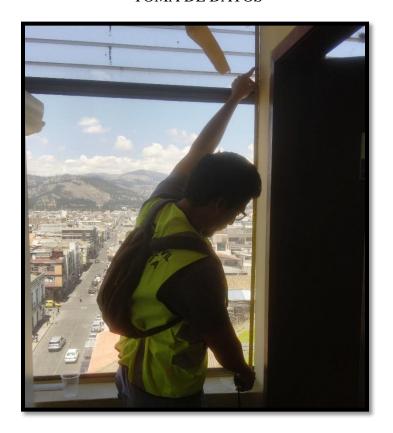

TOMA DE DATOS

TOMA DE DATOS


TOMA DE DATOS

TOMA DE DATOS

TOMA DE DATOS

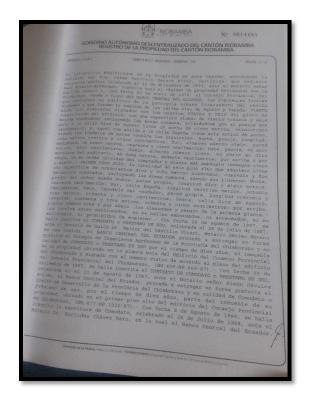

TOMA DE DATOS

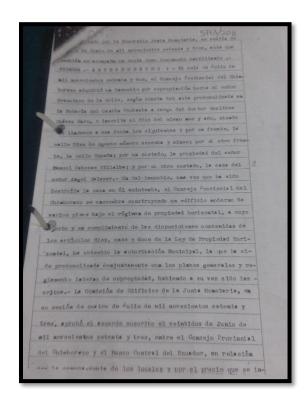
TOMA DE DATOS

TOMA DE DATOS

TOMA DE DATOS

TOMA DE DATOS


TOMA DE DATOS


TOMA DE DATOS

TOMA DE DATOS

INVESTIGACIÓN DE EDIFICIO

INVESTIGACIÓN DE EDIFICIO

PRINCIPALES FALLAS EN EDIFICIOS

PRINCIPALES FALLAS EN EDIFICIOS

PRINCIPALES FALLAS EN EDIFICIOS

PRINCIPALES FALLAS EN EDIFICIOS

PRINCIPALES FALLAS EN EDIFICIOS

9.4. Anexo 4. Clasificación de los perfiles de suelo NEC 2015

A Perfil de roca competente Vs ≥ 1500m B Perfil de roca de rigidez media 1500 m/s > 760 m/s C Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o 760 m/s >	-						
Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o Perfiles de suelos muy densos o roca blanda, que cumplan con N≥ 50.0 Cualquiera de los dos criterios Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o Perfiles de suelos rígidos que cumplan cualquiera de las dos 760 m/s 760 m/s 760 m/s > 700 m/s > 700 m/s N≥ 50.0 Su ≥ 100KP Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o ≥180 m/s	> Vs ≥						
criterio de velocidad de la onda de cortante, o 360 m/s Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios N≥ 50.0 Su ≥ 100KP Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o ≥180 m/s Perfiles de suelos rígidos que cumplan cualquiera de las dos 50 > N ≥ 15							
Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios Su ≥ 100KP Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o ≥180 m/s Perfiles de suelos rígidos que cumplan cualquiera de las dos 50 > N ≥ 15	Vs≥						
la onda de cortante, o ≥180 m/s Perfiles de suelos rígidos que cumplan cualquiera de las dos 50 > N ≥ 15	Pa						
	Vs						
condiciones. 100 kPa > 5 kPa	5.0 Su ≥ 50						
Perfil que cumpla el criterio de velocidad de la onda de cortante, o Vs < 180 m	n/s						
Perfil que contiene un espesor total H mayor de 3m de arcillas blandas $ P>20 \text{ w} \ge 40\%$ $ S \le 50 \text{ kPa}$	a						
Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el por un ingeniero geotecnista. Se contemplan las siguientes subclases:	l sitio						
F1- Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales co suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc							
F2- Turba y arcillas orgánicas y muy orgánicas (H > 3m para turba o arcillas orgánicas muy orgánicas).	, .						
F3- Arcillas de muy alta plasticidad (H > 7.5m con indice de Plasticidad IP > 75)							
F4- Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30m)							
F5- Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca variaciones bruscas de velocidades de ondas de corte.							
F6- Rellenos colocados sin control ingenieril.							